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Abstract—The adoption of XACML as the standard for spec-
ifying access control policies for various applications, especially
web services is vastly increasing. A policy evaluation engine
can easily become a bottleneck when enforcing large policies.
In this paper we propose an adaptive approach for XACML
policy optimization. We proposed a clustering technique that
categorizes policies and rules within a policy set and policy
respectively in respect to target subjects. Furthermore, we
propose a usage based framework that computes access request
statistics to dynamically optimize the ordering of policies within
a policy set and rules within a policy. Reordering is applied to
categorized policies and rules from our proposed clustering
technique. To evaluate the performance of our framework,
we conducted extensive experiments on XACML policies. We
evaluated separately the improvement due to categorization
and to reordering techniques, in order to assess the policy sets
targeted by our techniques. The experimental results show that

our approach is orders of magnitude more efficient than the
standard Sun PDP.

Keywords-Policy Evaluation; Policy Categorization;
XACML;

I. INTRODUCTION

An access control policy is a set of rules that enables

resource owners and administrators to control access and

dissemination of their shared resources. When a user re-

quests access to a certain resource, the access control module

evaluates the policy rules to decide whether to allow or to

deny access to the requested resource. With the continuously

expanding number of resources and the increasing diversity

and size of online systems, policies are becoming more

complex and will involve a large number of rules. Efficient

policy evaluation techniques are required to ensure that

policy evaluation introduces low latency without affecting

the correctness of the evaluation process. Taking the widely

adopted XACML (Extensible Access Control Mark-up Lan-

guage) [9] policy as an example, a policy set is composed

of a set of policies, where each policy is divided into a set

of rules. XACML not only provides a formalism to specify

authorization policies, but it also includes information useful

in making authorization decisions, as well as approaches to

integrate constraints specified by multiple subjects, such as

the policy combination algorithm. The policy combination

algorithm along with other features unique to XACML,

make it a very flexible and rich language.

A policy in XACML is evaluated by an XACML engine,

which is composed of two main components, the Policy

Evaluation Point (PEP) and the Policy Decision Point (PDP).

The PEP receives an access request, translates it into an

XACML request, and then sends the XACML to the PDP.

The PDP checks the request against a set of XACML

policies, and determines whether the request should be

permitted or denied. The evaluation process, in turn, has

two main phases: first the policy to be used is selected, and

second the rules among the selected policies to be evaluated.

The designers of current XACML engines, however, have

not taken into account performance of the policy evaluation

process. For example, Sun XACML PDP [12], which is

the first and most widely used evaluation engine, performs

brute force searching by comparing a request with all the

rules in an XACML policy. Clearly, this approach does not

efficiently support a large number of users’ requests, who

need prompt access to the data they are entitled to. To

enable an XACML policy evaluation engine to process a

large number of requests in real time, especially in face

of a burst volume of requests, an efficient XACML policy

evaluation engine is necessary. Our work aims at providing

such a policy engine. Achieving this goal is a challenging

task due to the complexity of both the XACML policies,

and the evaluation process. Policies need to be reorganized

according to the incoming access request type, in a possibly

inexpensive and adaptive manner. Additionally, in order to

preserve the original intention of the policy writers, it is

important that the policy reorganization process does not

affect the policy evaluation results, that is, the response to

access requests must not change.

Starting from the SUN policy evaluation engine [12], in

this paper we present the design and implementation of a

simple yet effective framework that greatly improves the

performance of XACML policies evaluation. Our design

draws from the following two observations: (1) users who

share common properties have the same requests types, thus,

the same subset of rules are evaluated, and (2) optimal rules

ordering is subjective to the actual users’ requests. Precisely,

our problem consists of finding which policy is applicable

to an incoming request and also optimizing the ordering of

the rules within the policy to match the request. In order to



allow for this type of matching, we propose a technique that

utilizes actual users’ requests’ characteristics. We categorize

the users’ access requests at two levels. Based on observation

(1) we first categorize the request by subjects to see which

policy would be applicable to it. Then, based on observation

(2) we find a match between the request and the execution

vectors for that policy. Execution vectors are the order

in which the rules in a policy are applicable to a request.

We build execution vectors by using different statistics to

evaluate the cost of a rule and their frequency, and develop

an approach to efficiently reorder policies and rules based

on the specific properties of access requests. We formulate

the rule optimization problem for access policy requests, and

show that our usage framework solves it.

We implemented our proposed framework as an extension

of the open source Sun PDP engine. We conducted extensive

experiments on synthetic XACML policies of different struc-

tures and sizes, and conducted experiments using different

sets of access requests. The experimental results show that

our framework is orders of magnitude more efficient than

Sun’s PDP, and the performance difference between our

and Sun’s PDP grows almost linearly with the number

of rules in XACML policies. We tested the categorization

and reordering techniques separately, and find interesting

results on how our categorization technique by itself already

outperforms the Sun implementation by orders of magnitude.

The reordering provides a means for adaptability to user

requests to further enhance the performance of the policy

evaluation subject to different request trends.

The rest of the paper is organized as follows. In the

next section we present some background information on

XACML and access requests. In Section III we present

our usage framework, present the optimal rule ordering

problem, and provide an efficient algorithm to reorder rules

and policies. In Section IV, we present our categorization

based optimization. Our experimental results are shown in

Section V, whereas Related work is discussed in Section

VI. We conclude the paper with conclusion and pointer for

future research directions in Section VII.

II. PRELIMINARIES

In this section we provide the logic formalism adopted
throughout the paper to denote XACML policies and access
requests. XACML policies are composed of five basic com-
ponents, namely, PolicySet, Policy, Target, Rule, and Policy
and Rule Combining algorithm for conflict resolution. The
root of the XACML policy is the PolicySet element, which
is defined as:

Definition 1: PolicySet is a tuple PS = (id, t, P, PC),
where:

• id is the PolicySet id.

• t is the PolicySet Target element, and takes values from
the set {Applicable, NotApplicable, Indeterminate}.

• P = {p1, . . . , pn} is the set of policies.

• PC is the policy combining algorithm.

A Policy element is a set of rules and conditions that
control access to protected resources which we refer to as
objects. A policy contains a target, a set of rules, and a rule
combining algorithm. A policy is defined as:

Definition 2: A policy is a tuple P = (id, t, R, RC),
where:

• id is the policy id.

• t is the policy target element, and takes values from the
set {Applicable, NotApplicable, Indeterminate}.

• R = {r1, . . . , rn} is the set of rules.

• RC is the rule combining algorithm.

The Target element t specifies a set of predicates on the re-

quest attributes, which must be met in a PolicySet, Policy or

Rule to apply to a given request. The attributes in the target

element are categorized into Subject, Resource and Action.

The attribute values in a request are compared with those

included in the Target, if all the attributes match then the

Target’s PolicySet, Policy or Rule is said to be Applicable.

If the request and the Target attributes do not match then

the request is NotApplicable, and if the evaluation results

in an error then the request is said to be Indeterminate. If

a request satisfies the target of a policy, then the request is

further checked against the rule set of the policy; otherwise,

the policy is skipped without further examining its rules.

The Target predicates can be quite complex, and can be

constructed using functions and attributes. The rule com-

bining algorithm RC allows one to specify the approach

to compute the decision result of a policy when the policy

contains rules evaluating to conflicting effects. The policy

combining algorithm PC follows the same logic but at the

PolicySet level.

A Rule identifies a complete and atomic authorization
constraint that can exist in isolation with respect to the policy
in which it has been created. We define rules as follows.

Definition 3: A Rule is a tuple r = (id, t, e, c), where:

• id is the rule id.

• t is the rule target element, and takes values from the
set {Applicable, NotApplicable, Indeterminate}.

• e is the rule effect, where e ∈ {Permit, Deny}.

• c is a boolean condition against the request attributes.

The rule target element is similar to the policy target instead
it indicates the requests applicable to the rule. The condition
c is a boolean function with respect to the request attributes.
The rule’s effect e, which can be Permit or Deny, is returned
if the rule’s condition c evaluates to true. The rule evaluation
can also result in an error (Indeterminate) or the condition
is doesn’t apply to the request attributes (NotApplicable).
Access requests are typically matched against a policy set.
A policy set is the root of an XACML policy, it holds policy
elements and, possibly, other policy sets. We denote access
requests according to the following notation. Let S, O, A
and X denote the of all subjects, objects, actions and context
variables in an access control system respectively.

Definition 4: (Access Request) An access request q is the
tuple (s, o, a, x), where s ∈ S is the subject making the



request, o ∈ O is the requested object, a ∈ A is the requested
action on object o, and x ∈ X are the context attributes.

III. POLICY REORDERING FRAMEWORK

When a web server needs to enforce an XACML policy

with a large number of rules, the policy evaluation engine

may easily become the performance bottleneck for the

server. To enable an XACML policy evaluation engine to

process simultaneous requests of large quantities in real

time, especially in face of a burst volume of requests,

an efficient XACML policy evaluation engine is necessary.

In such environments the requests’ distribution is dynamic

in terms of volume, and type of requesters. Motivated

by such observation, we develop an adaptive framework

that dynamically determines the best ordering according

to the incoming requests and the recently received history

of requests and executions. In this section we present the

basic notions that are relevant for our framework, define

statistics extracted from policy execution logs, formulate the

rule ordering problem, and finally provide an algorithm to

provide the optimal rule ordering.

A. Execution Vector and Policy Permutation

In what follows for the sake of presentation we focus on
policy permutation where a similar approach adopted for
PolicySet permutation. We define a policy permutation as
follows:

Definition 5: (Policy Permutation) Given a policy P with
a rule set P.R = {r1, . . . , rn}, a policy permutation π is a
policy Pπ generated by the following procedure: (0) Pπ .R =
{}, Pπ .id = P.id, Pπ .t = P.t, and Pπ .RC = P.RC. (1) P ′

is a copy of P. (2) Select a random rule ri from P ′ and
append ri to the end of Pπ. (3) Repeat step 2 until P ′ is
empty.

Policy permutation may alter the correctness of a policy,
and result in different evaluations for a same set of requests.
We are interested in policy permutations that do not alter the
policy evaluation results for any request.

Definition 6: (Safe Policy Permutation) A safe policy
permutation π of a policy P is safe iff all requests permitted
(denied) by the permuted policy Pπ are also permitted
(denied) by P .
We assume all requests are well formed such that the policy
evaluation returns PERMIT or DENY by the PDP. With such
an assumption we provide the below theorem:

Theorem 1: Safe Permit (Deny) Overrides Permutation.
A policy P having a rule combining algorithm P.RC set to
Permit-Overrides or Deny-Overrides is safe with respect to
all possible policy permutations.

Proof: Assuming each rule returns either permit or deny

then the policy evaluation of a policy P , with a permit

overrides rule combing algorithm is the disjunction of all the

rule results represented by: E(P ) = E(r1)∨· · ·∨E(rn). The

disjunction operator is commutative where a ∨ b = b ∨ a,

and associative where (a ∨ b) ∨ c = a ∨ (b ∨ c), thus the

evaluation of the policy P and any permutation Pπ are

equal E(P ) = E(Pπ). The deny override follows similar

semantics and follows a similar proof.

Using Theorem 1 policies with permit override or deny

override rule combining algorithms can be permuted without

affecting the policy semantics. This does not hold for other

rule combining algorithms such as first applicable. We focus

our discussion on permit and deny override combining

algorithms for reordering optimization, while as will be dis-

cussed in the following sections policy based categorization

is independent of the rule combining algorithm used.
Given a policy permutation π and a given request q, a

subset of rules is of relevance. We represent an ordering of
such rules as the execution vector.

Definition 7: (Execution vector) Γ = [r1, . . . , rn] is the
execution vector representing the set of applicable rules,
where rule ri is executed before rule ri+1. Where π(i) refers
to the position for rule ri in execution vector.

According to Theorem 1, any policy execution vector

for a policy P having permit overrides rule combining

algorithm will evaluate to the same effect as P , the challenge

is to evaluate the execution vector that will provide the

lowest latency. Before presenting our optimal rule ordering

approach, we need to define the rule weights.

B. Computation of Rule Weights

Our approach relies on statistics and metrics collected as

PDP receives requests. Statistics are collected at two separate

levels: policy and rule level. At the policy level, we are

interested in understanding how often a policy applies, and

by which class of users. At the rule level, it is important to

identify the class of efficient execution vectors. In order to

collect meaningful metrics, we assign to each rule (policy)

weights that reflect the dominance of this rule in the requests.

The weights are based on the PDP returned values, and

constructed based on the 1) frequency and the 2) complexity

of the rule (policy).

During a given time interval the number of times a policy

Pi or a rule rj gets evaluated is referred to as the hit

frequency. We refer to the hit frequency by f and use the

dot notation to refer to policy (Pi.f) and rule (rj .f) hit

frequency. Statistics with respect to the hit frequency are

accumulated as follows:

• Policy (Rule) Permit Ratio: Records the ratio between

the number of times a policy (rule) returns a permit

with respect to the number of times a policy (rule) gets

evaluated, where Pi.p and rj .p represent the policy and

rule permit ratios respectively.

• Policy (Rule) Deny Ratio: Records the ratio between

the number of times a policy (rule) returns a deny with

respect to the number of times a policy (rule) gets

evaluated. Where Pi.d and rj .d represent the policy

and rule deny ratios respectively.

• Policy (Rule) Hit Ratio: Records the ratio between

the number of times a policy (rule) is applicable with

respect to the number of times a policy (rule) gets



evaluated. Where Pi.a and rj .a represent the policy

and rule hit ratios respectively.

Note that all the above statistics are easily derived from

the XACML execution log. In addition to the rule evaluation

statistics we also consider the rule computational complexity.

Rules vary from simple conditions to more complicated

statements that require the parsing of an XML document or

querying a database. The rule complexity metric is related

to the number of operations required to execute the rule,

we compute it as the number of boolean atomic conditions

appearing in a rule, both at target and at the condition

element. Let n(t) denote the number of conditions in the

Target element (denoted as t according to Definition 3),

and let n(c) be the number of conditions in the Condition

element c. XACML supports over 100 standard functions

that could be used in the boolean conditions, for example

the Belong to. We assign a cost mi to each standard

function stdi appearing in the rule. mi is computed by

estimating the average execution time of the function. The

simple atomic boolean conditions are assigned a constant

cost k. For a rule rj the complexity metric is given by:

Ej = k ∗ (n(rj .t) + n(rj .c) +
∑

stdi∈rj
mi where stdi

represents a uniquely identified standard function appearing

in rj . Using both the accumulated rule statistics and the

complexity metric for a rule rj we compute the rule cost as

cj = β ∗Ej + α ∗Fj . Here, β and α are weights that allow

system administrators to tune the cost computation, based on

the local constraints, such as the available processing power

and network bandwidth.

The rule cost is designed to represent the cost of comput-

ing a rule, the complexity metric Ej easily represents the

rule cost, however the other component is based on the rule’s

accumulated statistics Fj . The value of Fj is based on the

rule combining algorithm, for example if a rule combining

algorithm is Permit-Overrides then the metric Fj is based on

the decreasing function with respect to the rule permit ratio

(rj .p) or an increasing function with respect to the rule deny

ratio (rj .d). Intuitively, this implies that the rules need to be

reordered such that for a policy with the permit overrides

rule combining algorithm, the rule rj with the lowest cj to

be evaluated first.

C. Optimal Rule Reordering

Using the rule cost metrics we present our optimal rule

reordering problem. Given a policy (Pi), the optimal request

execution problem (REP) is to find an execution sequence

that requires the minimum number of rule evaluations. We

assume that rules within policies are evaluated sequentially.

The policy Pi, composed of n rules {r1, . . . , rn}, where

π(j) refers to the position (depth) for rule rj in the policy

execution vector. The cost associated with rule rj is referred

to by cj , as computed in Section III-B. The expected

cost (average search length) for a given permutation π is

given by: Φi =
∑n

j=1 cjπ(j). The main challenge is to

compute the optimal policy permutation π that will generate

the minimum expected policy execution cost. Additionally,

among the possibly optimal π, we need to ensure the policy

permutation to be safe, as defined in Definition 6. By

computing Φi we are able to generate a cost metric for each

policy Pi.

A policy set PS is composed of a set of policies

{P1, . . . , Pm}. We assume the policies are executed sequen-

tially. Using the minimum policy expected cost Φi, and the

collected policy evaluation statistics, we compute the policy

set execution sequence. The position of policy Pi in the

policy set execution sequence is referred to by ξ(i). The

expected cost (average search length) for a given policy set

(PSk) permutation ξ is given by: Ψk =
∑m

i=1 Φiξ(i). The

computed costs for both the policyset and the policy reflect

both the cost of the cost and statistics of execution. The

costs Φi and Ψk are minimized when policies and rules are

ordered in ascending order with respect to their costs [10].

Weights can be updated according to two different strate-

gies: 1) periodically, 2) based on the last ρ received requests.

In the first case, we update the weight values using the latest

statistics. New execution vectors are constructed using fresh

rule weights in order to boost up the hit performance close

to its optimum level. The update period should be based on

the predictable incoming request (e.g., certain months of the

year) flow changes. In the latter case, the optimal execution

vectors are constructed based on the computed rule weights.

The incoming access requests are then processed accord-

ing to the ordering determined. Intuitively, the maximal

reduction is obtained when the incoming requests perfectly

match the requests’ distribution. Notice that more than one

execution vector could be optimal and safe. However, since

not all rules have the same complexity, different execution

vectors may sensibly influence the overall evaluation time,

even if a safe and efficient policy permutation is found.

IV. CATEGORIZATION BASED OPTIMIZATION

The optimization problem minimizes the average request

evaluation time. This approach is ideal if the policy requests

follow a uniform statistic. If we solely rely on reordering,

assuming a role based access control (RBAC) system of two

roles, say student and faculty, where there are on average

100 student requests for every faculty request, the computed

statistics will be dominated by the student requests. As

such, the optimization problem presented above will favor

the student role. Reordering rules and policies in these

circumstances is not sufficient, as the computational cost

will not be given by the evaluation of the rules themselves,

rather it will heavily depend on the time spent on finding

the applicable policies to the given request.

Hence, in order to further improve the efficiency of the

rule reordering, we resort to clustering the policies. Building

on execution vectors, an intuitive mechanism is to categorize

the policies based on the subjects. Starting from a set of L[S]



clusters, where L[S] is the number of subjects in S, the goal

is first to reduce the number of categories in order to allow

the reordering to have a considerable effect on the execution

time. Second, to reduce the memory footprint needed for

caching the categories.

To achieve these results, we propose adopting an al-

gorithm based on the K-Means clustering method [13].

Generally speaking, the K-Means algorithm is used to

cluster m objects based on attributes into k partitions, k < m.

Each cluster consists of a “center” around which individual

elements of the data set being clustered are grouped together.

This grouping is done based on some measure of similarity

to the other elements in that cluster. In our domain, the

number of clusters Nc and the centers of these clusters,

i.e. Nc subjects are chosen at random from the set of

subjects S. The set of centers (or clusters) is referred to

as Cs. Each subject Si ∈ S is considered, and its similarity

Di,k is calculated with respect to each subject Sk ∈ Cs

in the different clusters. Si will be added to that cluster

where the similarity Di,k is maximum. The strength of this

simple algorithm lies in the way the similarity metric Di,k

is calculated. The similarity metric aims to cluster together

the subjects that share a large number of policies which

are applicable to all of them. Let Pi represents the set

of policies applicable to a given subject Si and let L[Pi]
be the number of policies applicable to that subject. The

number of policies shared between two subjects, Si and Sk

is given by L[Pi∩Pk]. The fraction of the number of policies

shared between the two subjects that are a part of L[Pi]

is given by Θi,k, where: Θi,k = L[Pi∩Pk]
L[Pi]

. The similarity

metric Di,k between subject Si and Sk is calculated as

follows Di,k = Θi,k +Θk,i. The subject Si is grouped with

the cluster centering on Sk where Di,k is maximum. This

ensures that only those subjects which have a large number

of policies in common are grouped together. In general,

the clustering is more effective when the number of shared

policies is large, i.e. when L[Pi ∩ Pk] is large.

This algorithm allows us to tune our optimization ap-

proach such that we can either maximize the improvement

due to clustering or due to reordering, or both, based on

the specific context. In general, the improvement due to

clustering and categorization is most apparent when there

are very large policies to process. On the other hand, for

extremely simple policies with only one or two subjects,

reordering is more helpful. In this scenario, reordering saves

valuable execution time because by reordering, we can

ensure that the policy does not do a brute force search to

evaluate all the rules.

V. EXPERIMENTAL RESULTS

Our experiments were performed on a MacBook Pro

running Mac OS X 10.5.5 with 4GB of RAM and a 2.4GHz

Dual Core Intel processor. We conducted two set of tests.

The first test suite deals with XACML policy sets where

subjects have a small number of applicable rules. The second

suite investigates policy sets where subjects have a large

number of applicable rules. All tests were conducted using

100,000 randomly generated XACML requests. All requests

have a single value for the subject, resource, and action.

Using both test suites we performed extensive experiments

to investigate the performance enhancements yielded by our

proposed categorization and reordering techniques. We also

compared our results with Sun’s PDP engine results.

Our experimental process includes two main stages; first,

the setup stage and second, the actual request evaluations.

The setup stage includes three sub-stages:

S1. Categorization of the experimental policy sets. Catego-

rization is performed as explained in Section IV. The

number of categories used for each policy set ranges

from N to N/10, where N is the number of unique

subjects within a policy set,

S2. Training stage that collects the results of request eval-

uations (permit, deny, not-applicable, indeterminate)

subsequently used for the reordering stage,

S3. Reordering policies within the policy set and all rules

within each policy according to the statistics we gath-

ered during the training stage.

The setup stage needs to be executed only once, however

the sub-stages (S2) and (S3) could be executed repeatedly

to retrain and reorder the policies and rules to achieve

better performance. For our tests, we chose not to repeat the

sub-stages, and thus measure the performance in the worst

case scenario. The results of categorization and reordering

are cached in memory. During the second stage the access

requests are actually evaluated, using the ordering and

categories set up in the previous stage. The processing time

is the time needed to evaluate a request against a policy

subjected to our setup stage plus the time to make a decision

on that request. The preprocessing time is the time needed

to complete the setup stage.

The experimental results show that our framework is

orders of magnitude more efficient than Sun’s PDP, and the

performance difference between our framework and Sun’s

PDP grows linearly with the number of requests and number

of rules within a policy set. We discuss the test results in

details in the following subsections.

A. Test Suite I Results

This test suite deals with policy sets where each subject

has a few number of applicable rules. This test case is

used to emphasize the effect of our categorization technique,

whereas our reordering technique may have a minor effect.

This test suite uses policy sets of 4000, 2000, 1000, and 400

rules. For each policy set, rules are divided evenly among

100 policies. For the sake of testing the Permit Overrides

combining algorithm is used for all the test policy sets and

policies. Using this test suite our approach is 1638 times

faster than the Sun PDP.
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(a) Effect of categorization on evaluation time
w.r.t # of categories used with no reordering.
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(c) Evaluation times comparison between our
approach and Sun PDP.
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(e) Performance boost from reordering w.r.t the #
of categories using a 4000-rule policy.
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Figure 1. Experimental Results

1) Results with Categorization Only: We carried out a

first set of tests only applying the categorization technique

with no reordering. The number of categories used for

each policy set was varied from N to N/10, where N
is the number of unique subjects within a policy set. The

preprocessing time for this approach is the time needed for

categorizing a policy set (sub-stage S1.). When using N
categories, results show that preprocessing a policy set of

100 policies and 4000 rules takes about 25138 ms and a

policy set of 100 policies and 400 rules takes about 913

ms. When N/10 categories are used, preprocessing times

are 23464 ms and 487 ms for the 4000-rule and 400-rule

policy sets respectively.

The experimental results shows that the total processing

times for our approach is at least 172 times faster than Sun’s

PDP. For a policy set of 100 policies and 4000 rules while

using N/10 categories, it takes 973.1 ms to evaluate 100,000

random requests, whereas Sun’s PDP takes about 1152460

ms. A policy set with 400 rules takes 760.2 ms and Sun’s

PDP takes about 130421.3 ms. When N categories are used,

total processing times are 714.6 ms and 624.6 ms for the

4000-rule and 400-rule policy sets respectively. Figure 1(a)

shows the complete results when using categorization alone

with respect to the number of categories used, which range

from 0 to 3000.

2) Results with Categorization plus Reordering: For this

set of tests, we applied the categorization technique, fol-

lowed by our reordering technique. The number of categories

used also range from N to N/10. We make use of all sub-

stages within the setup stage. Preprocessing time in this case

is the time for both categorization and reordering of rules.

Our results show that preprocessing time is proportional to

the number of rules, as reported in Figure 1(d). Preprocess-

ing a policy set of 100 policies and 4000 rules while using

N categories takes about 25158 ms, and a policy set with

100 policies and 400 rules takes about 925 ms. When N/10
categories are used, preprocessing times are lower, 23472

ms and 491 ms for the 4000-rule and 400-rule policy sets

respectively. The results for this set of tests are reported in

Figure 1(b). The experimental results shows that the total

processing times for our approach is at least 171 times

faster than Sun’s PDP. For a policy set of 100 policies and

4000 rules while using N/10 categories, it takes 967.5 ms

to evaluate 100,000 random requests, whereas Sun’s PDP

takes about 1152460 ms. A policy set with 400 rules takes

763 ms and Sun’s PDP takes about 130421.3 ms. When

N categories are used, total processing times are 703.7

ms and 616.2 ms for the 4000-rule and 400-rule policy

sets respectively. Figure 1(b) shows our complete results

when using categorization plus reordering with respect to

the number of categories used. Figure 1(c) is a comparison

between our approach with categorization plus reordering

and Sun’s PDP. The plot representing our approach is an

average of the best and worst case we obtained from using

different numbers of categories. The results obtained by this



set of tests report a very slight performance improvement

due to the reordering. Reordering rules is not a significant

factor to performance. because of the low number of rules

applicable to each subject. Reordering’s effect can be better

appreciated for policy sets with many rules applicable to

each subject.

B. Test Suite II Results

Our first test suite did not give us any indications about the

reordering effect. We decided to generate a second test suite

that could allow us to observe the effect of reordering on per-

formance. This suite simulates a scenario where each subject

within a policy set is guaranteed to have a significant number

of applicable rules. When reordering happens in such a

scenario, there will be no need to go over all rules within

a subject’s category. As expected, this test suite showed a

significant performance advantage for the categorization plus

reordering approach over the categorization only approach.

We used policy sets of 4000, 2000, 1000, and 400 rules

(different from the ones used in first test suite). For each

policy set, rules are divided evenly among 100 policies.

Overall, our results for this test suite show that our approach

is 949 times faster than Sun’s PDP engine. Similar to the first

test suite, we conducted experiments using categorization

only and categorization with reordering.

1) Results with Categorization Only: The preprocessing

times for this case are inline with the times for the analogous

set of tests (Section V-A) of the first test suite. Precisely,

when using N categories, preprocessing a policy set of 100

policies and 4000 rules takes about 25397 ms and a policy

set of 100 policies and 400 rules takes about 978 ms. When

N/10 categories are used, preprocessing times are 28633

ms and 1075 ms for the 4000-rule and 400-rule policy sets

respectively.

As in the previous test case, the results for total processing

times show a very significant improvement in performance

over Sun’s PDP. Our results indicate that our mechanism

provides at least 48 times faster evaluation. For a policy set

of 100 policies and 4000 rules while using N/10 categories,

it takes 2437.2 ms to evaluate 100,000 random requests,

whereas Sun’s PDP takes about 851477 ms. A policy set

with 400 rules takes 2272.2 ms and Sun’s PDP takes about

120230.3 ms. For N categories, total processing times are

2517.6 ms and 2242.5 ms for the 4000-rule and 400-rule

policy sets respectively.

2) Results with Categorization plus Reordering: Al-

though the policies are different, we notice that the gathered

times are very similar to the times recorded for preprocessing

the set of policies used for the first test suite (reported

in Figure 1(d)). This observation leads to the conclusion

that the preprocessing time is not influenced by the type of

policies used. The preprocessing times are almost negligi-

ble when compared to the highly significant performance

improvement in total processing times over Sun’s PDP, not

to mention that preprocessing times correspond to the setup

stage of our framework which only occurs once within a

policy set’s lifetime or upon a client’s request.

Figure 1(f) compares Sun’s PDP total evaluation times

with our results from the second test suite. The total pro-

cessing time of our approach is at least 139 times faster than

Sun’s PDP. As shown, for a policy set of 100 policies and

4000 rules while using N/10 categories, it takes 842.3 ms to

evaluate 100,000 random requests, whereas Sun’s PDP takes

about 851477 ms. A policy set with 400 rules takes 867.5 ms

and Sun’s PDP takes about 120230.3 ms. When N categories

are used, total processing times are 897.6 ms and 830 ms

for the 4000-rule and 400-rule policy sets respectively.

For the 4000-rule policy set used in this test suite, results

indicate that categorization plus reordering has a 65.4%

performance improvement over using categorization alone.

Figure 1(e) shows the performance boost reordering provides

with respect to the number of categorizations used. We no-

tice a slight improvement in performance when the number

of categories is reduced. This result is explained by the fact

that the policy set we used has many rules that are applicable

to all subjects, which means the resulting categories are not

much different from the original categories.

Space Complexity. Concerning space complexity, our

framework is relatively efficient. After sub-stage a, the

categorized policy set will be cached in memory using a

Hashtable (H1). H1 will be of size Nc∗L[Pc]∗L[Rc], where

Nc is the number of categories used, L[Pc] the number of

policies within a category, and L[Rc] the number of rules

within Pc.

VI. RELATED WORK

XACML optimization and analysis has recently emerged

as a new research topic in the area of XACML [6][8][2][11].

In [6], Liu et al. present the most recent proposal for the op-

timization of XACML policies. Liu et al, focus on improving

the performance of the PDP by numericalization and normal-

ization of the XACML Policies. The authors posit that since

numerical comparison is more efficient, an improvement

in performance is achieved by numericalization itself. The

normalized policies are converted into tree data structures

for efficient processing. We identify two main differences

between our work and [6]. First, we rely on statistics,

which help us defining the best ordering process based on

actual users requests. Secondly, the authors unify all the

rule combining algorithms into only the First-Applicable,

while we do not require such cumbersome preprocessing

stage. Finally, although no complexity evaluation is given

by Liu et al., we believe our approach is more efficient in

terms of space complexity, since it does not rely on storing

complex data structures such as tables and trees. Another

work related is by Miseldine [8]. Miseldine proposes to

achieve policy optimization by minimizing the average cost

of finding a match at the rule level the target level and the



policy level. The work assumes no changes to the XACML

specification, in that the Sun’s XACML implementation

is not altered. The improvement is achieved by applying

optimization techniques to the policies themselves. There-

fore, anyone who consumes XACML remains structurally

unaffected but anyone who generates XACML policies can

generate an optimized output by applying the optimization

techniques outlined. The main differences between [8] and

our work arise in the way we try to meet this premise.

While we focus on the reordering of rules and further

on the categorization of the policies based on both the

policies and the rules, Miseldine approaches this problem

considering policy configurations. Although interesting, the

improvements are drastically worse than ours. For example,

their optimized method takes around 200ms for evaluation

4000 rules, where with our techniques, it only takes 1

ms. Kolovski et al [11], formalizes XACML policies using

description logics (DL), and using the DL verifier they are

able to detect and remove redundant XACML rules. The

idea of removing redundant policies is interesting and may

be useful to boost the evaluation time. However, it is yet to

be validated whether the improvement will be worth the time

needed to remove redundant policies, and how significant the

overall improvement would be.

One related area where similar optimization techniques

are often explored is Firewall Filtering [3][4]. The major

differences between firewall optimization and XACML pol-

icy optimization arise because in the case of firewalls, a

major portion of the traffic packets match a small subset

of the firewall rules, and the same distribution of traffic is

maintained over a significant period of time. This skewness

is not experienced in the incoming requests for an XACML

policy. Besides, firewall rules, which have dependencies

on each other, have an order of precedence defined, while

rules in an XACML policies are not related. Despite these

differences between firewall filtering optimization and op-

timization of XACML policies, we can still draw from the

body of work on firewalls. We employ metrics similar to the

ones used by the authors for evaluating which rules would

be most applicable to our policies. For example, frequency

is useful in predicting the best match for a new incoming

request which does not match any existing categories. The

packet matching is a simple, single level problem as the only

requirement is to match the packet’s header against the rule

list and performing the corresponding filtering. Our goal is

more ambitious, since not only we try to find which policy is

applicable to an incoming request but also we optimize the

ordering of the rules within the policy to match the request.

VII. CONCLUSIONS

XACML policies and their evaluation play a critical

role in many access control systems, where numerous

requests are received by large set of subjects. This calls for

high performance XACML policy evaluation engines. In

this paper, we introduced a novel optimization framework

based on statistics and policy set categorization. Our

categorization technique, which is based on the K-means

algorithm, provides fast access to applicable policies and

rules for a certain subject. Reordering policies and rules

within a policy set ensures that request evaluations are

done on policies and rules that are most likely to return

a positive effect; hence, avoid examining all policies and

rules which are not likely to be significant for the access

request being evaluated. We showed through experimental

analysis the enhancement obtained for different set of

policies of varying size and structures. Our results show

that our techniques outperform the policy evaluation of the

SUN PDP engine by orders of magnitude.
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