
Towards Trust-aware Access Management for
Ad-hoc Collaborations

Jing Jin, Gail-Joon Ahn, Mohamed Shehab, and Hongxin Hu
The University of North Carolina at Charlotte

{jjin,gahn,mshehab,hxhu}@uncc.edu

Abstract—In an ad-hoc collaborative sharing environment,
attribute-based access control provides a promising approach
in defining authorization over shared resources based on users’
properties/attributes rather than their identities. While the user’s
attributes are always asserted by different authorities in the
form of credentials, these authorities may not be accepted by
the resource owner with the same degree of trust. In this paper,
we present a trust-aware role-based authorization framework,
called RAMARS TM, to address both the access control and
the trust management issues in such environment. Central to
our approach is the dynamic role assignment based on a user’s
attributes, and trust management, as a special constraint, is in
place to make trust decisions on a user’s attributes. Required
components and functions are identified and specified in our trust
and access management policies. An architecture of prototype
system implementation is also discussed.

I. INTRODUCTION

In an ad-hoc collaborative environment, users who belong
to different organizations spontaneously establish or join col-
laboration relationships, dynamically contribute and share data
resources [10]. There is no pre-established global consensus
of trustworthiness among all participating parties in such
environment. The resource owner, also called originator, has
to expect a large number of strangers, i.e. users that have
no pre-existing relationships, trying to collaborate and request
to share information. In this situation, what is important is
not “Who exactly is this requester?”, but “Do I trust this
requester to share my resource?” As the identity alone does
not imply privileges, it has made the traditional identity-
based access control approaches ineffective in this situation.
Instead, the properties/attributes possessed by the requester
(e.g., employment status, citizenship, group membership and
qualifications) will be more relevant to characterizing users
and determining whether or not they should be trusted to
conduct sensitive interactions involved in the collaborative
information sharing.

Usually, user attributes are asserted in the form of creden-
tials (i.e. certificates) that are issued by certain attribute certi-
fiers or made by other entities as recommendations [17], and
the same attribute may be asserted by different certifiers. As
there is no central trusted attribute authority can be assumed
in dynamic collaborations, credentials issued by different
certifiers may not be trusted by the originator to the same
extend and thus fail to assert the attributes of the user with
the desired degree of trust, resulting in the denial of access
to the originator’s resource. As an example, an originator may

only trust a requester’s US citizenship presented in his passport
which is certified by US government instead of a driver’s
license issued by a local DMV office. In addition, transitivity
of trust is a common property in distributed environment where
delegation is in place to construct a chain of trust extending
to an end user through multiple intermediators. It is a critical
issue to address the validation and criteria for trust evaluation
over these trust propagation chains in order to determine the
trustworthiness of the user attributes.

A. A Motivating Scenario

To better illustrate both the access control and trust man-
agement issues we have mentioned, a hypothetical scenario
in the context of collaboration within the regional disease
surveillance is presented below. We will use this example
through the paper to demonstrate our proposed approaches.

Suppose Regional Emergency Department (RED) receives
a dramatic increase in the number of patients with similar
symptoms. This could be a sign of a new disease breakout
or an incident of bioterrorism attack. To quickly diagnose
the disease and facilitate the communication of this breakout,
RED needs to securely share the medical data with other
collaborating organizations. Without a priori knowledge of the
exact persons in the collaborating organizations who may need
access to investigate the data, RED defines the authorization
through a set of required attributes that the user must possess.
For example, security clearance guidelines require that the
user must be a US citizen, and he must be a member of
Disease Control Group. Suppose RED needs special experts
from ABC National Lab (ABC) to help analyze the data. The
user then must be affiliated with ABC and work as a role of
“Investigator”.

Suppose a user X is trying to access the medical data. He
presents both his passport and driver’s license to prove his US
citizenship. Local Public Health Department issues a credential
for his Disease Control Group membership. Since ABC has
outsourced its human resource services to another company
called AdminiStaff, along with a credential demonstrating
the outsourcing relationship, AdminiStaff issues a credential
asserting X’s affiliation with ABC and his “Investigator” role.
Upon receiving the access request with X’s credentials, RED
has to first decide on whether or not to trust these attributes
based on X’s credentials. And only trusted attributes can be
used for determining X’s access.

B. Our Objectives

Traditional role-based access control (RBAC) systems [18]
achieve effective privilege management in a local domain,
however, they do not address unknown users and trust rel-
evant aspects encountered in collaboration settings. Neverthe-
less, Trust Management (TM) systems (e.g., SDSI/SPKI [6],
KeyNote [3], [4], RT [13]) have been developed advocating
attribute-based approach and managing delegation of author-
ity to achieve the control in a decentralized fashion, which
certainly can be adopted as a means to determine the trust-
worthiness among unknown collaborative entities.

In this paper, we propose a RAMARS TM framework1 that
extends traditional RBAC with more flexible features inspired
by research results from attribute-based access control and TM
systems to provide an effective trust-aware role-based access
management for secure resource sharing in ad-hoc collabo-
rations. In particular, RAMARS TM represents permissions
for controlled sharing actions in terms of roles. The role
assignment adopts a more dynamic and flexible attribute-based
scheme, where the user’s role(s) are determined by the set of
attributes entitled to the user. A special Trust Management
(TM) constraint is introduced to address major components
and functions that contribute to determine the trustworthiness
of user-attributes entitlements. Accordingly, a set of trust
assessment policies are specified to direct the whole trust
evaluation process. A system architecture is also proposed to
implement the prototype of RAMARS TM framework.

The rest of the paper is organized as follows. In Section II,
we describe our proposed RAMARM TM framework. We
first introduce formal definitions of the necessary components
in the framework and then focus on the trust management
constraint in terms of key concepts and necessary policy
specifications. The attribute-based role assignment policy and
the evaluation is also briefly discussed. In Section III, we
explain how the proposed framework can be realized in
XACML policies by using the example discussed earlier. The
prototype system architecture and implementation plan are
also discussed in the same section. Section IV reviews related
works that try to merge trust management with RBAC. Finally,
Section V concludes the paper with future research directions.

II. RAMARS TM FRAMEWORK

In this section, we first present RAMARS TM as an autho-
rization framework that extends RBAC with attribute-based
role assignment and the Trust Management (TM) constraint.
The components and functions related to the trust evaluation of
user-attributes entitlement, as abstracted in the component of
TM constraint, are discussed and formally defined in another
trust management layer.

A. RAMARS TM in the Authorization Layer

As shown in Figure 1, RAMARS TM adopts basic com-
ponents from RBAC [18] for privilege management and in-

1RAMARS TM stands for Role-based Access Management for Ad-hoc
Resource Sharing with Trust Management. This is a continuous work of our
previous RAMARS framework [10].

troduces new components to accommodate the new scheme
of role assignment through the user-attributes entitlement. We
follow the conventional approach to defining them using sets,
relations, and functions.

Definition 1: The following is a list of original RBAC
components:
• U ,R,P and S are sets of users, roles, permissions, and

sessions, respectively.
• PA ⊆ P × R is a many-to-many permission to role

assignment relation.
• RH ⊆ R×R is a partial order on R, written as ¹.
Definition 2: The following are additional components in-

troduced in RAMARS TM model:
• ATTR is a set of attributes involved in the system.

ATTR = {attr1, . . . , attrn}.
• AS is a collection of attribute sets. {as1, . . . , ass} where

asi = {attri, . . . , attrt} ⊆ ATTR, i ∈ [1, s].
• ETL ⊆ U × AS is a many-to-many user-attributes

entitlement relation.
• RA ⊆ ETL × R is a many-to-many user-attributes

entitlement to role assignment relation.
• usr attrs etl: S → ETL is a function mapping

each session si to a single user-attributes entitlement
usr attrs etl(si).

• roles: S → 2R is a function mapping each ses-
sion si to a set of roles roles(si) ⊆ {r|(∃r′ ≥
r)[usr attrs etl(si), r′ ∈ RA]}.

• role etls: R → 2ETL is a function mapping each role
ri to a set of user-attributes entitlements role etls(ri) ⊆
{etl|(etl, ri) ∈ RA}.

B. RAMARS TM in Trust Management Layer

Trust Management constraint is the most important com-
ponent to convey issues in determining the trustworthiness of
user-attributes entitlements. We would like to elaborate more
details of this constraint by first introducing a few related key
concepts and functions.

Definition 3: (Entities). The set of entities E =
{e1, . . . , en} are defined to generalize all related parties (indi-
viduals and/or organizations) in the collaborative environment.
As a subset, individual users U ⊆ E, is a special subset of
entities, who need to be authorized to access to the resource.
In our example, the requester X is an individual user to whom
the access permission should be granted.

Definition 4: (Attributes). The set of attributes are defined
as ATTR = {attr1, . . . , attrn}, where each attri (i ∈ [1, n])
is represented in the form of (Aname, V alue) pair, for
instance, (citizenship, US).

An individual user claims the entitlement of an attribute by
presenting supportive credential(s). We consider two types of
credentials in our framework, namely attribute credential and
delegation credential. An attribute credential is a statement
issued by a certifier to entitle certain attribute(s) to a user.
In our example, both the passport and the driver’s license are
attribute credentials to assert the X-(Citizenship, US)

RHRRAU PConsPAS...ETL AS rolesusr_attrs_etlTM
Fig. 1. RAMARS RM Authorization Layer

entitlement. A delegation credential is a statement specifying
the delegation relationship between two entities to transfer
assertion rights over certain attribute(s), one as the delegator
(certifier) and the other as the delegatee (credential holder)
regarding to certain attribute(s). By outsourcing, ABC del-
egates attributes of (affiliation,ABC) and (role,
Investigator) to AdminiStaff. In other words, ABC
trusts and authorizes AdminisStaff to issue attribute cre-
dentials. Besides, the certifier may need to specify certain
constraints over their issued credentials. We define the context
as an additional component in the credential specification
to include all circumstance constraints that may be used to
determine the validity of a credential. As addressed in [1], the
validity period is a basic context constraint that can be defined
as CtxI = {[start, end]|start, end ∈ Time Instances ∪
∞, start ≤ end}. Another important context constraint is
to define how further a credential can be delegated. A non-
negative integer is defined as the maximum delegation depth
for this context constraint. Formally, CtxD = {n|n ∈ Z, n ≥
0}. By combining these two context constraints, we can
define a new context CtxI×D ⊆ CtxI ×CtxD. New context
constraints can be defined in similar ways when new validation
requirements appear. To summarize, we define a credential as
follows:

Definition 5: (Credential). A credential is defined as a
tuple of cred = (holder, attrs, certifier, Ctx), where
holder, certifier ∈ E, attrs ⊆ ATTR, and Ctx ⊆
Ctx1 × Ctx2 × . . . × Ctxn. We use the dot notation to
refer to its elements, such as cred.holder. And we define a
function of max depth(cred) = cred.Ctx.CtxD to denote
the delegation depth constraint.

The sequence of delegation credentials and an attribute
credential asserting the same attribute(s) construct a chain of
trust propagation extending to the end user. We define this
chain as an assertion path.

Definition 6: (Assertion path). An assertion path ap[attrs]
regarding the attrs is a sequence of credentials cred1 →
cred2 → · · · → credi → · · · → credn, where n ≥ 1,
credi = (holderi, attrs, certifieri, Ctxi), credi.holder =
credi+1.certifier for all i ∈ [1, n − 1]. Simply, ap[attrs] =

cred1cred2 . . . credn. And we define a function to re-
trieve the number of credentials in an assertion path, i.e.
depth(ap[attrs]) = n.

• If depth(ap[attrs]) = 1, then the attrs is directly
asserted by an attribute certificate.

• Otherwise, the attrs is asserted indirectly through a
delegation chain including an ordered list of credentials
in ap[attrs].

A user’s attributes may be directly and/or indirectly asserted
through different assertion paths with different degree of trust.
When inspecting the trust on assertion paths, not all possible
paths need to be considered. We define the following two
validation functions to evaluate the validity of the assertion
paths, so that invalid paths can be discarded before the trust
evaluation.

Definition 7: (Credential validation function). The vali-
dation function is defined as a boolean function of:

validate(cred, EN) cred.Ctx→ {true, false}, where cred is
a credential to be evaluated, and EN is the current envi-
ronmental parameters captured at runtime according to the
validation constraints defined in cred.Ctx.

As an example of evaluation using the instant
of validity period, suppose cred.Ctx.CtxI =
[start, end], validate(cred, EN) = true iff
start ≤ currentDate(EN) ≤ end.

Definition 8: (Assertion path validation function). Let
ap[attrs] := cred1cred2 . . . credn be an assertion path. The
validation function is defined by a boolean function:

validate(ap[attrs], EN) → {true, false}.
The function evaluates the validity using the algorithm

shown in Figure 2, where each credi (i ∈ [1, n]) is first vali-
dated using the credential validation function, then the whole
assertion path is validated against the delegation constraints.

Definition 9: (Trust level). Trust level is a measure indi-
cating the degree of trust that an originator may put on an
assertion path regarding the asserted attributes. The set of trust
levels is defined as a partial order (TL,¹).

In our example, assume both the requester X’s passport
and driver’s license are valid to assert his (citizenship,

Algorithm validateInput: ap[attrs], EN /* ap[attrs] is a particular assertion path to be validated, EN is the environmental parameters */Output: true if valid, otherwise false/* check validity for direct assertion */IF depth(ap[attrs]) = 1 THEN /* if there’s only one attribute credential in the assertion path */ result = validate(credi, EN); return result; /* validate the credential and return the result *// * check validity for indirect assertion */ELSE FOR each (credi∈ap[attrs]) DOresult = validate(credi, EN); IF result = false THEN return false; /* validate each individual credential */ ELSE IF max_depth(cred_i)< (depth(ap[attrs])-i) THEN return false; /* validate the whole path against delegation constraints */return true;
Fig. 2. Algorithm for Assertion Path Validation Function

US) attribute. However, RED, as the originator, may trust the
passport more than the driver’s license. Similarly, the depth
of an assertion path may also affect the trust level for indirect
assertions.

Trust level serves as an effective mechanism for an orig-
inator to subjectively rank and compare different assertion
paths regarding the asserted user-attributes entitlement. Yet
the ultimate question in RAMARS TM is whether the user-
attributes entitlement can be trusted by the originator for
further authorization. The originator has to make the final
decision on the trustworthiness of the entitlements given the
references of trust levels achieved by different assertion paths.
In our example, the X-(citizenship,US) entitlement
asserted by the driver’s license (DMV) may not meet the
required trust level, and thus can not be trusted.

Definition 10: (Trust level assessment function). We de-
fine the function mapping the trust level of each assertion path
as:

trustAssessment : AP [Attrs] TAP.TL→ TL.
Definition 11: (Trustworthiness assessment function).

We define the function of mapping the trust level of each
assertion path to a boolean trust decision:

trustDecision : AP [Attrs]× TL
TAP.TD→ {true, false}.

Trust level and trustworthiness assessment functions rely
on a policy component to be available for the evaluation.
We define the trust assessment policy (TAP) as a set of rules
that an originator defines to govern the process of assigning
trust levels to assertion paths (TAP.TL) and to make the trust
decision on the entitlements based on a predefined threshold
of the minimum required trust level (TAP.TD). The details of
TAP specification will be discussed in the subsequent section.
Different policies will result in different trust decisions even
for the same set of supportive credentials of the user-attributes
entitlement. The trust assessment policy is subjective and
discretionary to the originator. In addition, as the collaboration
relationships may change over time, an originator needs to
adjust its trust assessment policy accordingly to accommodate
changes in the environment and new trust requirements that
may emerge.

C. Trust Management Policies and Evaluation Algorithm

The attribute credential and delegation credential are used to
express the assertions of user attributes and the delegation rela-
tionship between two certifiers over certain attributes, respec-
tively. The validation constraints (as represented in cred.Ctx)
make the credentials policy neutral, and thus require clear
syntax and semantics on the policy specification. In addition,
TAP, as mentioned earlier, is a necessary policy component
to define the rules for trust assessment. Therefore, our trust
management policy framework includes the attribute credential
policy (ATTR Policy), delegation policy (DLGT Policy), and
trust assessment policy (TAP).

Attribute credential policy (ATTR Policy) specifies the
context constraints under which a certifier authorizes/asserts
certain attributes to a user. The general definition of ATTR
Policy is a tuple
〈holder, attrs, certifier, CtxD|CtxI | . . .〉.
It shares similar elements to the credential specification

(Definition 5), but emphasizes on the Ctx component, where
context constraints are specified as different types of constraint
rules, such as time interval rules, delegation rules, etc.

Delegation credential policy (DLGT Policy) specifies the
constraints under which a certifier as a delegator delegates the
right over certain attributes to another certifier as a delegatee.
A DLGT Policy is defined as the same format of an ATTR
Policy.

Trust assessment policy (TAP) is used in two types of
functionalities: to determine the trust level of an assertion
path regarding certain attribute(s); and to make the trust
decision on the user-attributes entitlement. We realize the two
functionalities using two policies referred to as TAP.TL and
TAP.TD, respectively.

We consider three major factors for an originator to de-
termine the trust level of an assertion path regarding cer-
tain attribute(s): (1) the certifier of the attribute creden-
tial, with which the originator may have different trust re-
lationships; (2) the depth of the delegation chain for the
asserted attribute if delegation credentials are presented;
(3) the number of certifiers asserting the same attribute
if recommendations are considered. TAP.TL is defined as:
〈ap[attrs], certifier|AP depth|No certifiers, tl〉. The se-
mantics of TAP.TL is that a trust level tl is assigned to an
assertion path ap[attrs] based on conditions of the certifier,
the delegation depth, and/or the number of certifiers.

TAP.TD policy specifies the rule that the minimum required
trust level an asserted attributes has to achieve in order to
be trusted by an originator. TAP.TD is specified as a tuple
of 〈ap[attrs], req tl〉, where req tl is the minimum required
trust level for which the asserted user-attributes entitlement to
be trusted.

Given a set of supportive credentials, we design an algo-
rithm, called evalTrust, to evaluate the trustworthiness of
the claimed entitlements (Figure 3). The algorithm works as
follows. In Step 1, the supportive credentials are categorized

Algorithm evalTrustInput: attrs, CredSet, EN, TAP /* attrs is the attributes to be evaluated, CredSet is the supportive credential set, EN is current environmental settings, TAP is Trust Assessment Policy */Output: true if attrs is trusted, false otherwise/* Step 1: Finding credential paths and path validation */Paths := findAssertionPaths(attrs, CredSet); FOR each (p∈Paths) DOIF validate(p, EN) ≠ true THEN Paths.remove(p); /* validate each path p in Paths, and remove invalid ones *//* Step 2: Trust level assessment */Set TLs := null;FOR each (p∈Paths) DO tl = trustAssessment(p, TAP.TL); /* assign trust level tl to each valid p in Paths according to TAP.TL policy */ TLs.add(tl); /* add tl to TLs *//* Step 3: Trustworthiness evaluation */FOR each (tl∈TLs) DOIF makeDecision(attrs, tl, TAP.TD) = true THEN return true; /* return true if any tl achieves true in trust decision against TAP.TD policy */ return false; /* return false otherwise */Algorithm findAssertionPathsInput: CredSet, attrs /* CredSet is the available credential set, attrs is the asserted attributes */Output: APs /* a set of assertion paths APs that can be derived from CredSet for the given attr */Set relevantCreds := null;FOR each (c∈CredSet) DO IF c.Attrs = attrs THENrelevantCreds.add(c); /* add all relevant credentials asserting attrs to relevantCreds set */FOR each (c∈relevantCreds) DO IF c.Ctx.CtxD = 0 THEN List ap.add(c); /* initiate a new assertion path for each single attribute credential */APs.add(ap); /* add the path to APs */remove(c, relevantCreds);WHILE length(relevantCreds > 0) DO FOR each (ap∈APs) DOc := ap.get(length(ap)-1); /* retrieve the last credential in the assertion path */ FOR each (cred∈relevantCreds) DO IF cred.Holder = c.Certifier THEN ap.add(cred); /* find and add the immediate precedent delegation credential to the path */remove(cred, relevantCreds); /* remove the just added delegation credential from relevantCreds */FOR each (ap∈APs) DOreverseElements(ap); /* reverse all elements in each ap to get the correct order of an assertion path */return APs;
Fig. 3. Trustworthiness Evaluation Algorithm

into a set of assertion paths (Paths) regarding the asserted at-
tributes through another algorithm findAssertionPaths.
Each path p is validated using the function validate(p,EN)
against ATTR policies and/or DLGT policies as defined in
Definition 8. Invalid assertion paths are discarded. In Step
2, each of the valid assertion paths is evaluated against
TAP.TL, resulting in a trust level (tl) being assigned. This
procedure utilizes the trust level assessment function defined
in Definition 10. Finally in Step 3, these trust levels achieved
by different assertion paths are evaluated against the trust
decision policy (TAP.TD) to make the final decision on whether
the claimed user-attributes entitlements are trusted for further
role assignment or not. A value of true is returned if any of

the assertion paths achieves satisfiable trust level, so that the
claimed user-attributes entitlements asserted by this assertion
path will be trusted and used for further role assignment. This
step utilizes the trustworthiness assessment function defined
in Definition 11.

D. Role Assignment Policy and Evaluation

In our RAMARS TM framework, the trust management
constraint is utilized to derive the trusted user-attributes en-
titlements, and the role assignment is only based on these
trusted user-attributes entitlements. The simplest form of role
assignment policy (RA Policy) is specified as 〈r, etls〉, to
define the required user-attributes entitlements for a user to

be assigned to a particular role. This is generalized using the
following function:

Definition 12: (Role assignment function). We define the
function as:

roleAssignment(etl) RA→ 2R, where etl is the set of trusted
entitlements, RA is the RA Policy, and the function returns a
set of roles assigned to the user-attributes entitlement.

Constraints that are addressed in RBAC models such as Sep-
aration of Duty (SoD), prerequisite and cardinality [18], and
later recognized temporal and location based constraints [2],
[12] can also be specified in the RA Policy to meet various
access management requirements involved in the ad-hoc col-
laboration environment. The research on these constraints are
out of the scope of this paper.

III. REALIZING THE RAMARS TM FRAMEWORK AND
IMPLEMENTATION PLAN

XACML [15] is an OASIS standard that describes a general
policy language used to protect resources as well as an access
decision language. Recently published XACML3.0 [16] has
included delegation concepts. The draft defines two types of
policies, access policies and administrative policies, to differ-
entiate normal authorization policies from delegation policies.
The delegation chain is derived and validated through a pro-
cess of policy reduction back to the original delegator’s policy
of the delegation chain. Using these features, we design a set
of XACML-based policies to implement our RAMARS TM
policy framework. Figure 4 illustrates the policy examples to
realize the motivation scenario we discussed earlier.

The ATTR Policy specifies a passport attribute creden-
tial/policy that the US government, as the policy cer-
tifier, asserts X-(citizenship, US) entitlement, with
the interval context constraint between 12/31/2002 and
12/31/2007. The DLGT Policy specifies that ABC delegates
to AdminiStaff the right of (affiliation,ABC) and
(role,Investigator) attributes. Within the delegation,
ABC also specifies the max_dlgt_depth = 1 as the delegation
constraint to restrict further delegations by AdminiStaff.
The TAP.TL policy realizes the trust level assessment policy
defined by the originator (RED). Inside the policy, Rule 1
specifies that RED trusts US Government with a high level
to assert (citizenship, US); and Rule 2 specifies that
RED trusts ABC with the maximum delegation depth ≤ 2
with a medium level of trust. With this policy being defined,
the entitlement of X-(citizenship,US) asserted by US
Government will be assigned to a high level of trust. And
a medium level of trust will be assigned to X’s affiliation
and role attributes. In TAP.TD policy, Rule 1 specifies that
the (citizenship, US) attribute will be trusted when its
achieved trust level is high, where Rule 2 specifies that the
affiliation and role attributes will be trusted when its
achieved trust level is equal or higher than medium. With
this policy being defined, X’s US citizenship, affiliation and
role attributes are all trusted by RED and can be promoted
for further role assignment evaluation. Finally, the RA policy
specifies that a user is assigned to a Collaborator role

with all the following attributes: (citizenship, US),
(affiliation, ABC), (role, Investigator) and
(membership, DCG).

As part of our on-going prototype implementation ef-
fort, JDK1.5 core packages as well as other necessary Java
libraries are used to develop the RAMARS TM Engine
in accommodating the evaluation procedures illustrated in
the evalTrust algorithm (Figure 3). We adopt SICS’s
XACML3.0 PDP implementation [21] to accommodate the
policy evaluation functionalities involved in the procedures of
credential validation, trust level assignment and trust decision
making. As we have identified that credential are policy neutral
when the context constraints are in place to determine the
validity of the credential itself. We directly use XACML-based
ATTR Policy and DLGT Policy to represent the attribute and
delegation credentials, respectively, so that our framework can
be easily and consistently implemented utilizing the policy
evaluation mechanism provided by XACML. These policies
are also flexible to be encoded into other implementation
mechanisms, such as X.509 attribute certificates [8], or con-
veyed through SAML assertions [7], [14]. Upon receiving the
trust and authorization decisions from RAMARS TM Engine,
the implementation of PEP is subject to the specific data
sharing application. As long as the communication interface
and protocol are well defined [11], the RAMARS TM Engine
is able to serve as the general trust management and autho-
rization service for any data sharing applications.

IV. RELATED WORKS

There are a number of approaches being published in recent
years to merge TM and RBAC. [13] and [20] consider
TM as a form of distributed access control managing role-
related credentials exchange and trust propagation across do-
mains through distributed policy statements. However, these
approaches are confined by assuming the “role” as the major
mediator that can be delegated and associated in relevant
domains. Our approach, driven by the general access manage-
ment requirements in collaborative environments, focuses on a
more general scale of trust management issues, where the trust
decision making relies on not only the role-related credentials,
but more general-purpose credentials, such as affiliations and
qualifications.

In [5], the authors attempt to extend conventional RBAC
by introducing the notion of trust. In their scheme, users
are first mapped to different trust levels, which are then
indirectly mapped to roles in RBAC. As the trust level is
closely associated with the role assignment, extra burden and
complexity have been laid on the design of role and role
hierarchy construct, where trust requirements have to be taken
into consideration. It interferes with the extendibility of both
RBAC and trust management, and the discrepancies between
the dominance in trust levels and role hierarchies are difficult
to be reconciled.

The closest work to our approach is [19], where autho-
rizations are determined based on user’s attributes. Trust
evaluation is used to determine the degree of trust in the

<Policy>
<Rule> Permit

RA Policy<Target><Subjects> citizenship = US affiliation = ABCrole = Investigatormembership = DCG<Actions> assign<Resources> role = Collaborator<Policy> <Target><Rule> Permit
<PolicyIssuer> ABC Laboratory<DelegatedResources> affiliation = ABCrole = Investigator<Delegates> AdminiStaff<Condition> max_dlgt_depth <= 1

DLGT Policy(ABC AdminiStaff) <Policy><Rule> Permit -- 1TAP.TL Policy<Target><Subjects> US Government<Actions> high<Rule> Permit -- 2
<Policy><Target><Rule> Permit<PolicyIssuer> US Government<Subjects> holder = X<Resources> citizenship = US<Condition> date <= 12/31/07 date >= 12/31/02

ATTR Policy(assert citizenship) <Policy><Rule> Permit --1TAP.TD Policy<Target><Subjects> tl = high<Actions> trust<Resources> citizenship = US<Rule> Permit -- 2<Target><Subjects> tl >= medium<Actions> trust<Resources> affiliation = ABCrole = Investigator
<Resources> citizenship = US<Target><Subjects> ABC Laboratorydlgt_depth <= 2<Actions> medium<Resources> affiliation = ABCrole = Investigator

Fig. 4. XACML Policy Examples

attributes claimed by the user based on the credentials supplied
by the user. However, the direct association of role definition
with the trust evaluation constraint poses similar limitations
as in [5]. And the work lacks details in providing concrete
criteria and solutions for trust relationship management and
trust evaluation for user’s credentials.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the RAMARS TM frame-
work in order to support secure resource sharing in ad-
hoc collaborations. In our framework, the authorizations of
unknown collaborators are determined based on their trusted
user-attributes entitlements. We identified the necessary ele-
ments and functions in the process of trust evaluation, and
a set of trust management policies are specified accordingly.
The system architecture outlined a mechanism to develop an
integrated trust and access management prototype realizing the
proposed RAMARS TM framework.

As our future work, we would like to fully implement
the RAMARS TM Engine into our secure resource sharing
tool, ShareEnabler [9], [10], to provide trust-aware access
management for both P2P and Grid collaborative sharing
environments. In addition, trust negotiation [22], [23] will be
explored as an iterative process of disclosing access control
policies and exchanging credentials between the originator and
the requesting party. In particular, the requesting party should
be able to gradually discover the originator’s authorization
policies, in order to present the right credentials that guarantee
the access.

ACKNOWLEDGMENT

The work was partially supported by the grants from Na-
tional Science Foundation (NSF-IIS- 0242393) and Depart-
ment of Energy Early Career Principal Investigator Award
(DE-FG02-03ER25565).

REFERENCES

[1] I. Agudo, J. Lopez, and J. A. Montenegro. Attribute delegation based
on ontologies and context information. In Prceedings of 10th IFIP TC-
6 and TC-11 Conference on Communications and Multimedia Security
(CMS’06), LNCS 4237, pages 54–66. Springer, 2006.

[2] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-RBAC:
a spatially aware RBAC. In Proceedings of 10th Symposium on Access
Control Models and Technologies (SACMAT), pages 29–37, 2005.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote
trustmanagement. RFC2704, 1999.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In Proceedings of IEEE Symposium on Security and Privacy, pages 164–
173, 1996.

[5] S. Chakraborty and I. Ray. TrustBAC: integrating trust relationships into
the RBAC model for access control in open systems. In Proceedings
of the 11th ACM symposium on Access control models and technologies
(SACMAT), pages 49–58, 2006.

[6] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI certificate theory. RFC 2693, 1999.

[7] Internet2. Opensaml 1.1 – an open source security assertion markup
language implementation. http://www.opensaml.org/.

[8] ITU. ITU-T Recommendation X.509. Information technology: Open
system interconnection – the directory: Public-key and attribute certificate
framework. ISO/IEC 9594-8, 2000.

[9] J. Jin and G.-J. Ahn. Policy-driven access management for ad-hoc
collaborative sharing. In Proceedings of 2nd International Workshop on
Pervasive Information Management (PIM), 2006.

[10] J. Jin and G.-J. Ahn. Role-based access management for ad-hoc
collaborative sharing. In Proceedings of 11th Symposium on Access
Control Models and Technologies (SACMAT), 2006.

[11] J. Jin and G.-J. Ahn. Towards secure information sharing and manage-
ment in grid environments. In Proceedings of 2nd IEEE International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, 2006.

[12] J. B. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal
role-based access control model. IEEE Transactions on Knowledge and
Data Engineering, 17(1):4–23, 2005.

[13] N. Li and J. C. Mitchell. RT: A role-based trust-management framework.
In Proceedings of The Third DARPA Information Survivability Conference
and Exposition (DISCEX III), pages 201–212, 2003.

[14] OASIS. SAML 2.0 profile of XACML. http://docs.oasis-
open.org/xacml/access control-xacml-2.0-saml profile-spec-cd-02.pdf,
November 2004.

[15] OASIS. XACML 2.0 core: extensible access control
markup language (XACML) version 2.0. http://docs.oasis-
open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf, February
2005.

[16] OASIS. XACML 3.0 administrative policy working draft 10, December
2005.

[17] A.-A. Rahman. The PGP trust model. The Journal of Electronic
Commerce, 1997.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47, February
1996.

[19] B. Shafiq, E. Bertino, and A. Ghafoor. Access control management in
a distributed environment supporting dynamic collaboration. In Proceed-
ings of the 2005 workshop on Digital identity management (DIM’05),
pages 104–112, November 2005.

[20] D. Shin and G.-J. Ahn. Role-based privilege and trust management.
Computer Science, Systems & Engineering Journal, 20(6), November
2005.

[21] Swedish Institute of Computer Science. XACML 3.0 administrative
policy support (beta version). http://www.sics.se/spot/xacml 3 0.html,
2006.

[22] W. Winsborough and N. Li. Towards practicl automated trust negotia-
tion. In Poceedings of IEEE Workshop on Policies for Distributed Systems
and Networks, pages 92– 103, 2002.

[23] T. Yu and M. Winslett. A unified scheme for resource protection in
automatic trust engotiation. In proceddings of the IEEE Symposium on
Securiy and Privacy, May 2003.

