This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

Adaptive Reordering & Clustering Based
Framework for Efficient XACML Policy Evaluation

Said Marouf, Mohamed Shehab, Anna Squicciarini, and Smitha Sundareswaran

Abstract— The adoption of XACML as the standard for spec-
ifying access control policies for various applications, especially
web services is vastly increasing. This calls for high performance
XACML policy evaluation engines. A policy evaluation engine can
easily become a bottleneck when enforcing XACML policies with
a large number of rules. In this paper we propose an adaptive
approach for XACML policy optimization. We apply a clustering
technique to policy sets based on the K-means algorithm. In
addition to clustering we find that, since a policy set has a variable
number of policies and a policy has a variable number of rules,
their ordering is important for efficient execution. By clustering
policy sets and reordering policies and rules in a policy set and
policies respectively, we formulated and solved the optimal policy
execution problem. The proposed clustering technique categorizes
policies and rules within a policy set and policy respectively
in respect to target subjects. When a request is received, it
is redirected to applicable policies and rules that correspond
to its subjects; hence, avoiding unnecessary evaluations from
occurring. We also propose a usage based framework that
computes access request statistics to dynamically optimize the
ordering access control to policies within a policy set and rules
within a policy. Reordering is applied to categorized policies
and rules from our proposed clustering technique. To evaluate
the performance of our framework, we conducted extensive
experiments on XACML policies. We evaluated separately the
improvement due to categorization and to reordering techniques,
in order to assess the policy sets targeted by our techniques.
The experimental results show that our approach is orders of
magnitude more efficient than standard Sun PDP.

Index Terms—Policy Evaluation;

XACML;

Policy Categorization;

I. INTRODUCTION

An access control policy is a set of rules that enables resource
owners and administrators to control access and dissemination
of their shared resources. For example, the Bloomberg financial
service access control policy would only allow subscribed users
to access the stock market data for market related studies. With
the growing number of internet services and users, this directly
implies an increase in the number of access requests and in
turn an increase in the number of policy evaluations. When a
user requests access to a certain resource, the access control
module evaluates the policy rules to decide whether to allow or
to deny access to the requested resource. With the continuously
expanding number of resources and the increasing diversity and
size of online systems, policies are becoming more complex
and will involve a large number of rules. For example, social
network sites typically host about 100 million users [3], [16], with

Mr. Marouf and Dr. Shehab are at The University of North Carolina at
Charlotte, {smarouf, mshehab} @uncc.edu

Dr. Squicciarini and Ms. Sundareswaran are at The Pennsylvania State
University, {acs20, sus263} @psu.edu

over 25 million photos uploaded daily. Efficient policy evaluation
techniques are required to ensure that policy evaluation introduces
low latency without affecting the correctness of the evaluation
process. Taking the widely adopted XACML (eXtensible Access
Control Mark-up Language) [15] policy as an example, a policy
set is composed of a set of policies, where each policy is divided
into a set of rules. XACML not only provides a formalism to
specify authorization policies, but it also includes information
useful in making authorization decisions, as well as approaches
to integrate constraints specified by multiple subjects, such as the
policy combination algorithm. The policy combination algorithm
along with other features unique to XACML, make it a very
flexible and rich language.

A policy in XACML is evaluated by an XACML engine.
The XACML engine is essentially composed by two main com-
ponents, the Policy Enforcement Point (PEP) and the Policy
Decision Point (PDP). The PEP is in charge of receiving an
access request and translating it into an XACML request. The
PEP then sends the XACML request to the PDP, which stores user
specified access control policies written in the XACML policy
language. The PDP checks the request with a set of XACML
policies, and determines whether the XACML request should be
permitted or denied. The evaluation process, in turn, has two main
phases: first the policy to be used is selected, and second the rule
among those appearing in the policy is used. The designers of
current XACML engines, however, have not taken into account
performance of the policy evaluation process. For example, Sun
XACML PDP [19], which is the first and most widely used
evaluation engine, performs brute force searching by comparing
a request with all the rules in an XACML policy. Clearly, this
approach does not efficiently support a large number of users’
requests, who need prompt access to the data they are entitled
to. To enable an XACML policy evaluation engine to process
simultaneous requests of large quantities in real time, especially
in face of a burst volume of requests, an efficient XACML policy
evaluation engine is necessary. Our work aims at providing such
a policy engine.

Achieving this goal is a challenging task however, due to the
complexity of both the XACML policies, and of the evaluation
process. Policies need to be reorganized according to the incoming
access request type, in a possibly inexpensive and adaptive man-
ner. Considering the example of Bloomberg’s financial service,
the PDP may face bursts of huge volumes of requests from the
registered traders to access a particular stock’s rate when there is
a rush to either buy or sell a stock. However, when the trading
is sluggish, the users may be more interested in reviewing their
portfolio. Each of these requests are targeted at different objects
and the policies need to be reorganized adaptively based on which
type of request is being received. The reordering process itself
needs to be lightweight and shuffle both the policies and the rules
composing them. Additionally, in order to preserve the original

Digital Objeéqt#&rri‘%] ler“‘fﬁﬁﬁﬁg/ﬁ'%%%i‘&%": University of North Carolina %@%?&}?@B?&’&O@dfﬁlaﬁéﬁﬁe 07,2010 at 15:52:44 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

intention of the policy writers, it is important that the reordering
process does not affect the policy evaluation results, that is, the
response to access requests must not change.

Starting from the Sun policy evaluation engine [19], in this
paper we present the design and implementation of a simple
yet effective framework that greatly improves the performance of
XACML policies evaluation. Our design draws from the following
two observations: (1) users who share common properties have the
same request types, thus, the same subset of rules are evaluated,
and (2) optimal rule ordering is subjective to the actual user
requests.

We formulate the rule optimization problem for access policy
requests, and show that our usage framework solves it. Precisely,
our problem consists of finding which policy is applicable to
an incoming request and also optimizing the ordering of the
rules within the policy to match the request. In order to allow
for this type of matching, we propose a technique that utilizes
actual users’ requests’ characteristics. We categorize the users’
access requests at two levels. Based on observation (1) we first
categorize the request by subjects to see which policy would
be applicable to it. Then, based on observation (2) we find a
match between the request and the execution vectors for that
policy. Execution vectors are the order in which the rules in a
policy are applicable to a request. We build execution vectors by
using different statistics to evaluate the cost of a rule and their
frequency, and develop an approach to efficiently reorder policies
and rules based on the specific properties of access requests.

We implemented our proposed framework as an extension of
the Sun PDP engine. We choose this engine due to its popularity
and to the fact that it is open source. We conducted extensive
experiments on synthetic XACML policies of large sizes. We
tested policies of different structures and sizes, and conducted
experiments using different sets of access requests. The experi-
mental results show that our framework is orders of magnitude
more efficient than Sun’s PDP, and the performance difference
between our and Sun’s PDP grows almost linearly with the
number of rules in XACML policies. We tested the categorization
and reordering techniques separately, and find interesting results
on how our categorization technique by itself already outperforms
the Sun implementation by orders of magnitude. The reordering
provides a means for adaptability to user requests to further en-
hance the performance of the policy evaluation subject to different
request trends. The required preprocessing time, necessary for
categorization and reordering of policies and rules, is negligible
as compared to the substantial improvement obtained.

The main contribution of this paper are thus summarized as
follows:

o We formulate the optimal execution problem for access
requests, and provide novel techniques to solve the problem,
by taking into account both the policy reordering process
and the rule process, while preserving the correctness of the
reordered policies.

e We provide a policy categorization mechanism to enable the
efficient policy processing.

e We prove through extensive tests that our approach outper-
forms the Sun’s implementation by orders of magnitude.

The rest of the paper is organized as follows. In the next
section we present some background information on XACML and
access requests. In Section III we present our usage framework,
present the optimal rule ordering problem, and provide an efficient

algorithm to reorder rules and policies. In Section IV, we present
our categorization based optimization. Our experimental results
are shown in Section V, whereas related work is discussed in
Section VI. We conclude the paper with conclusions and pointers
for future research directions in Section VII.

II. PRELIMINARIES

In this section we provide the logic formalism adopted through-
out the paper to denote XACML policies and access requests.
XACML policies are composed of five basic components, namely,
PolicySet, Policy, Target, Rule, and Policy and Rule Combining
algorithm for conflict resolution. The root of the XACML policy
is the PolicySet element, which is defined as follows:

Definition 1: PolicySet is a tuple PS = (id, ¢, P, PC'), where:

e id is the PolicySet id.

o t is the PolicySet Target element, and takes values from the
set {Applicable, NotApplicable, Indeterminate}.

o« P= {p17 e

e PC' is the policy combining algorithm.

A Policy element is a set of rules and conditions that control
access to protected resources which we refer to as objects. A
policy contains a target, a set of rules, and a rule combining
algorithm.

Definition 2: A policy is a tuple P = (id, t, R, RC'), where:

e id is the policy id.

,pn} is the set of policies.

o t is the policy target element, and takes values from the set
{Applicable, NotApplicable, Indeterminate}.

3 R = {7“17 .

e RC is the rule combining algorithm.

The Target element ¢ specifies a set of predicates on the request
attributes, which must be met in a PolicySet, Policy or Rule to
apply to a given request. The attributes in the target element
are categorized into Subject, Resource and Action. The attribute
values in a request are compared with those included in the Target,
if all the attributes match then the Target’s PolicySet, Policy
or Rule is said to be Applicable. If the request and the Target
attributes do not match then the request is NotApplicable, and if
the evaluation results in an error then the request is said to be
Indeterminate. If a request satisfies the target of a policy, then
the request is further checked against the rule set of the policy;
otherwise, the policy is skipped without further examining its
rules. The Target predicates can be quite complex, and can be
constructed using functions and attributes. The rule combining
algorithm RC respectively allows one to specify the approach to
compute the decision result of a policy when the policy contains
rules evaluating to conflicting effects. The policy combining
algorithm PC follows the same logic but at the PolicySet level.

A Rule identifies a complete and atomic authorization con-
straint that can exist in isolation with respect to the policy in
which it has been created. We define rules as follows.

Definition 3: A Rule is a tuple r = (id, t, e, ¢), where:

..,Tn} is the set of rules.

e id is the rule id.
e t is the rule target element, and takes values from the set
{Applicable, NotApplicable, Indeterminate}.
e c is the rule effect, where e € { Permit, Deny}.
e cis a boolean condition against the request attributes.
The rule target element is similar to the policy target instead
it indicates the requests applicable to the rule. The condition ¢

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

is a boolean function with respect to the request attributes. The
rule’s effect e, which can be Permit or Deny, is returned if the
rule’s condition ¢ evaluates to true. The rule evaluation can also
be Indeterminate in case of an error, or NotApplicable if the rule’s
target doesn’t apply to the request’s attributes. Access requests are
typically matched against a policy set. A policy set is the root of
an XACML policy, it holds policy elements and, possibly, other
policy sets. We denote access requests according to the following
notation. Let S, O, A and X denote all subjects, objects, actions
and context variables in an access control system respectively.

Definition 4: (Access Request) An access request g is the tuple
(s,0,a,z), where s € S is the subject making the request, o € O
is the requested object, a € A is the requested action on object
o, and x € X are the context attributes.

<PolicySet PolicySetId="PSID"
PolicyCombiningAlgId="permit-overrides" >
<Target/>
<Policy PolicyId="PID"
RuleCombiningAlgId="permit-overrides" >
<Target/>
<Rule RuleId="RID1" Effect="Deny">
<Target>
<Subjects>
<Subject >Bob</Subject>
<subject>John</Subject>
</Subjects>
<Resources>
<Resource>file2< /Resource>
< /Resources>
<Actions>
<Action>
<ActionMatch MatchId="string-equal">
<AttributeValue DataType ="string">
read
</AttributevValue>
<ActionAttributeDesignator
AttributeId ="AID1" DataType ="string"/>
</ActionMatch>
</Action>
</Actions>
</Target>
</Rule>
<Rule RuleId="RID2" Effect="Permit">
<Target>
<Subjects>
<Subject >Bob</Subject>
</Subjects>
<Resources>
<Resource>filel</Resource>
< /Resources>
<Actions>
<Action>
<ActionMatch MatchId="string-equal">
<AttributeValue DataType ="string">
read
< /AttributeValue>
<ActionAttributeDesignator
AttributeId ="AID2" DataType ="string"/>
< /ActionMatch>
</Action>
</Actions>
</Target>
</Rule>
</Policy>
</PolicySet>

Fig. 1. XACML Policy Set example.

Let us consider the PolicySet listed in Figure 1 which contains
one policy with 2 rules. The first rule specifies that “Both Bob
and John are denied read access to file2” where each “Bob”
and “John” is a Subject, “denied” is the rule Effect, “read” is
the Action, and “file2” is the Object or Resource, whereas the
second rule says “Bob has permission to read filel”, “Bob” being
the Subject, “has permission” the Effect, “read” the Action, and
“filel” the Object. Either rule could be accompanied with context
parameters (Environment Attributes) as part of a rule’s condition
such as time, system variables, history, or location. A target is a
condition on subject s € S, object o € O and the action a € A. If
the request satisfies the target conditions of a rule (policy) then we

say that the rule (policy) is applicable to the request, otherwise
it is not applicable. That is, if Bob makes a request to read filel,
his request would be applicable to the second rule which would
return a Permit.

III. PoLICY AND RULE REORDERING FRAMEWORK

When a web server needs to enforce an XACML policy
with a large number of rules, its XACML policy evaluation
engine may easily become the performance bottleneck for the
server. To enable an XACML policy evaluation engine to process
simultaneous requests of large quantities in real time, especially
in face of a burst volume of requests, an efficient XACML
policy evaluation engine is necessary. In such environments the
requests’ distribution is dynamic in terms of volume, types and
type of requesters. Motivated by such observation, we develop an
adaptive framework that dynamically determines the best ordering
according to the incoming requests and the recently received
history of requests and executions. In this section we present the
basic notions that are relevant for our framework, define statistics
extracted from policy execution logs, formulate the rule ordering
problem, and finally provide an algorithm to provide the optimal
rule ordering.

A. Execution Vector and Policy Permutation

In what follows for the sake of presentation we focus on policy
permutation where a similar approach is adopted for PolicySet
permutation. We define a policy permutation as follows:

Definition 5: (Policy Permutation) Given a policy P with a rule
set PR = {r1, ...,mn}, a policy permutation = is a policy Pr
generated by the following procedure:

e (0) Px.R = {}, Pr.id = Pid, Pr.t = Pt, and Pr.RC =

P.RC.

e (1) P’ is a copy of P.

e (2) Select a random rule r; from P’ and append r; to the

end of Pr.

e (3) Repeat step 2 until P’ is empty.

Policy permutation may alter the correctness of a policy, and
result in different evaluations for a same set of requests. We
are interested in policy permutations that do not alter the policy
evaluation results for any request.

Definition 6: (Safe Policy Permutation) A safe policy permu-
tation 7 of a policy P is safe iff all requests permitted (denied)
by the permuted policy P are also permitted (denied) by P.

We assume all requests are well formed such that the policy
evaluation returns PERMIT or DENY by the PDP. Using such an
assumption, we provide the below theorem:

Theorem 1: Safe Permit (Deny) Overrides Permutation. A pol-
icy P having a rule combining algorithm P.RC' set to Permit-
Overrides or Deny-Overrides is safe with respect to all possible
policy permutations.

Proof: The semantics of the permit overrides is that if any
rule evaluates to permit then the final authorization decision is
permit. Assuming each rule returns either permit or deny then
the policy evaluation of a policy P, with a permit overrides
rule combing algorithm is the disjunction of all the rule results
represented by: E(P) = E(ry) V ---V E(rn). The disjunction
operator is commutative where a V b = bV a, and associative
where (aVb)Ve=aV (bVc), thus the evaluation of the policy
P and any permutation P are equal E(P) = E(Pr). The deny
override follows similar semantics and follows a similar proof. W

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

Using Theorem 1 policies with permit override or deny override
rule combining algorithms can be permuted without affecting the
policy semantics. This does not hold for other rule combining
algorithms such as First-Applicable. We focus our discussion on
permit and deny override combining algorithms for reordering
optimization. As discussed in the following sections, policy based
categorization is independent of the rule combining algorithm
used.

Given a policy permutation 7 and a given request g, a subset
of rules is of relevance. We represent an ordering of such rules
as the execution vector.

Definition 7: (Execution vector) I' = [rq,..., 7] is the execu-

tion vector representing the set of applicable rules, where rule r;
is executed before rule r;1 1. 7(¢) refers to the position for rule
r; in execution vector.
According to Theorem 1, any policy execution vector for a policy
P having permit overrides rule combining algorithm will evaluate
to the same effect as P, the challenge is to evaluate the execution
vector that will provide the lowest latency. Hence, we need to
define the rule weights in order to present our optimal rule
ordering approach.

B. Computation of Rule Weights

Our approach relies on statistics and metrics collected as PDP
receives requests. Statistics are collected at two separate levels:
policy and rule level. At the policy level, we are interested in
understanding how often a policy applies, and by which class
of users. At the rule level, it is important to identify the class of
efficient execution vectors. In order to collect meaningful metrics,
we assign to each rule (policy) weights that reflect the dominance
of this rule in the requests. The weights are based on the PDP
returned values, and constructed based on the 1) frequency and
the 2) complexity of the rule (policy).

During a given time interval the number of times a policy P;
or a rule r; gets evaluated is referred to as the hit frequency. We
refer to the hit frequency by f and use the dot notation to refer to
policy (P;.f) and rule (r;.f) hit frequency. Statistics with respect
to the hit frequency are accumulated as follows:

e Policy (Rule) Permit Ratio: Records the ratio between the
number of times a policy (rule) returns a permit with respect
to the number of times a policy (rule) gets evaluated, where
P;.p and r;.p represent the policy and rule permit ratios
respectively.

e Policy (Rule) Deny Ratio: Records the ratio between the
number of times a policy (rule) returns a deny with respect
to the number of times a policy (rule) gets evaluated. Where
P;.d and r;.d represent the policy and rule deny ratios
respectively.

e Policy (Rule) Hit Ratio: Records the ratio between the num-
ber of times a policy (rule) is applicable with respect to the
number of times a policy (rule) gets evaluated. Where P;.a
and 7;.a represent the policy and rule hit ratios respectively.

Note that all the above statistics are easily derived from the
XACML execution log (see Figure 2). In addition to the rule
evaluation statistics we also consider the rule computational com-
plexity. Rules vary from simple conditions to more complicated
statements that require the parsing of an XML document or
querying a database. The rule complexity metric is related to the
number of operations required to execute the rule, we compute

Fig. 2. Log Based XACML Policy Evaluation Framework.

it as the number of boolean atomic conditions appearing in a
rule, both at target and at the condition element. Let n(¢) denote
the number of conditions in the Target element (denoted as ¢
according to Def. 3), and let n(c) be the number of conditions in
the Condition element c. XACML supports over 100 standard
functions that could be used in the boolean conditions, for
example the Belong_to. We assign a cost m; to each standard
function std; appearing in the rule. m; is computed by estimating
the average execution time of the function. The simple atomic
boolean conditions are assigned a constant cost k. For a rule r;
the complexity metric is given by:

E; =kxn(rj.t) +n(rj.c) + Z m;
std;€r;

where std; represents a uniquely identified standard function
appearing in r;. Using both the accumulated rule statistics and
the complexity metric for a rule r; we compute the rule cost as
follows:

Cj:ﬂ*Ej-i-a*Fj

Here, § and « are weights that allow system administrators to
tune the computation cost, based on the local constraints, such as
the available processing power and network bandwidth.

The rule cost is designed to represent the cost of computing
a rule, the complexity metric £; easily represents the rule cost,
however the other component is based on the rule’s accumulated
statistics F;. The value of F}; is based on the rule combining
algorithm, for example if a rule combining algorithm is Permit-
Overrides then the metric F} is based on the decreasing function
with respect to the rule permit ratio (r;.p) or an increasing
function with respect to the rule deny ratio (r;.d). Intuitively,
this implies that the rules need to be reordered such that for a
policy with the permit overrides rule combining algorithm, the
rule r; with the lowest c; is to be evaluated first.

C. Optimal Rule Reordering

Using the rule cost metrics we present our optimal rule reorder-
ing problem. Given a policy (P;), the optimal request execution
problem (REP) is to find an execution sequence that requires the
minimum number of rule evaluations. We assume that rules within
policies are evaluated sequentially. The policy P;, composed of n
rules {r1,...,rn}, where 7(j) refers to the position (depth) for
rule r; in the policy execution vector. The cost associated with
rule r; as computed in Section III-B is referred to as c;. The
expected cost (i.e., average search length) for a given permutation

m is given by:
n

®; = Z cim(J)

j=1

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

The main challenge is to compute the optimal policy permutation
« that will generate the minimum expected policy execution cost.
Additionally, among the possibly optimal 7, we need to ensure
the policy permutation to be safe, as defined in Definition 6. By
computing ®; we are able to generate a cost metric for each policy
P;.

A policy set PSS is composed of a set of policies { Py, ..., Pm}.
We assume the policies are executed sequentially. Using the mini-
mum policy expected cost ®;, and the collected policy evaluation
statistics, we compute the policy set execution sequence. The
position of policy P; in the policy set execution sequence is
referred to by £(i). The expected cost (average search length)
for a given policy set (PS)) permutation £ is given by:

m
Ty = ®iE(i)
i=1
The costs ®; and ¥ are minimized when policies and rules are

ordered in ascending order with respect to their costs [17]. Figure
3, shows the algorithm used at both the policyset and policy levels.

Algorithm: optimize_policyset
Input: Policy Set PS ={Pi,...,Pp},
Output: Optimal Policy Set Permutation PS*

1 if PS.PC = Permit-Overrides or Deny-Overrides
2 PS* «+ {}

3 for each P; € PS

4 P <« optimize_policy(P;)

5: if PS.alg = Permit-Overrides

6: Pfc=axP; &+ 8% P.p "

7 elseif PS.alg = Deny-Overrides

8 Pi*.c:a*P.".<I>+5*Pi»d71

9: PS*.insert(P;) //Priority Queue on P;.c
10 return PS*

11 return PS

Algorithm: optimize_policy
Input: Policy P={ri,...,mn},
Output: Optimal Policy Permutation P*

1: if P.RC = Permit-Overrides or Deny-Overrides
2: P* «

3: for each r; € P

4: Ej=k=*(n(rj.t+rj.c))+ Zstdi@‘j m;
5: if P.RC = Permit-Overrides

6: Fj=r;p-

7: elseif ISRC = Deny-Overrides

8: Fj = ’I"]‘,dil

9: ci=B*E; +axF;

10: P*.insert(r;) //Priority Queue on c¢j
11: P*.® =37 c;jm(h)

12: return P*

13: return P

Fig. 3. Optimal PolicySet and Policy Reordering

For example, consider a school database. During certain time
periods, the access requests would be more uniform and from
the same class of users (e.g. at the beginning of a semester
most requests would be from students needing to register for
courses, whereas faculty requests will be much less), while during
other time periods, more heterogeneous set of requests may be
submitted. In section V of this paper, we show how our framework
adapts to the different types of requests received and how we can
benefit from policy/rule reordering.

Weights can be updated according to two different strategies:
1) periodically, 2) based on the last p received requests. In the
first case, we update the weight values using the latest statistics.
New execution vectors are constructed using fresh rule weights in
order to boost up the hit performance close to its optimum level.
The update period should be based on the predictable incoming

request (e.g., certain months of the year) flow changes. In the
latter case, the optimal execution vectors are constructed based
on the computed rule weights. The incoming access requests are
then processed according to the ordering determined. Intuitively,
the maximal reduction is obtained when the incoming requests
perfectly match the requests’ distribution. Notice that more than
one execution vector could be optimal and safe. However, since
not all rules have the same complexity, different execution vectors
may sensibly influence the overall evaluation time, even if a safe
and efficient policy permutation is found.

IV. CATEGORIZATION BASED OPTIMIZATION

The optimization problem minimizes the average request eval-
uation time. This approach is ideal if the policy requests fol-
low a uniform statistic. However, this approach is unlikely to
be satisfactory in scenarios where the requests’ distribution is
dynamic in terms of volume and type of requesters. If we solely
rely on reordering, assuming a role based access control (RBAC)
system of two roles, say student and faculty, where there are
on average 100 student requests for every faculty request, the
computed statistics will be guided by the student requests. As
such, the optimization problem presented above will favor the
student role. Reordering rules and policies in these circumstances
is not sufficient, as the computational cost will not be given by the
evaluation of the rules themselves, rather it will heavily depend
on the time spent on finding the applicable policies to the given
request.

Hence, in order to further improve the efficiency of the rule
reordering, we resort to clustering the policies. Building on
execution vectors, an intuitive mechanism is to categorize the
policies based on the subjects. Starting from a set of L[S] clusters,
where L[S] is the number of subjects in S, the goal is first to
reduce the number of categories in order to allow the reordering
to have a considerable effect on the execution time. Second, to
reduce the memory footprint needed for caching the categories.
When the categorization is done on a per-subject basis, to record
an improvement in the execution time the policies must be
adequately large. This happens because, when there is a category
for each subject, there is essentially a unique execution vector for
that subject. When large policies are evaluated, the categorization
helps provide a good match for the execution vector and hence
fewer rules are evaluated, thereby improving the evaluation time.
In case of small policies, to make categorization effective, we
need to decrease the number of categories to be searched in
order to find the execution vector. In order to resolve this issue,
we resort to further clustering the requests. Figure 4, shows a
PolicySet and the different applicable views based on the involved
subject, where each view could serve as a subject based category.

To achieve these results, we propose adopting an algorithm
based on the K-Means clustering method [20]. Generally speak-
ing, the K-Means algorithm is used to cluster m objects based
on attributes into k partitions, k& < m. Each cluster consists of a
“center” around which individual elements of the data set being
clustered are grouped together. This grouping is done based on
some measure of similarity to the other elements in that cluster.
In our domain, the number of clusters N. and the centers of
these clusters, i.e. N subjects are chosen at random from the set
of subjects S. The set of centers (or clusters) is referred to as
Cs. Each subject S; € S is considered, and its similarity D; ; is
calculated with respect to each subject Sy € Cs in the different

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

17

sy all Sd Se

S, Sh S¢ all s,
(a) PolicySet P.S

— ; ,

ii---niiiﬁ

3
s, all s,s, s, all all se all all all
(¢) View(PS, sp) d) View(PS, sc)

Fig. 4. Policy Set and Views

clusters. S; will be added to that cluster where the similarity
D; 1. is maximum. The strength of this simple algorithm lies in
the way the similarity metric D; j, is calculated. The similarity
metric aims to cluster together the subjects that share a large
number of policies which are applicable to all of them. Let IP;
represents the set of policies applicable to a given subject S; and
let L[IP;] be the number of policies applicable to that subject.
The number of policies shared between two subjects, S; and Sy,
is given by L[IP; N IP.]. The fraction of the number of policies
shared between the two subjects that are a part of L[IP;] is given
by ©; j, where:

o L[IPZ n IP;C]
Ouk = L[P;]

The similarity metric D; j, between subject S; and Sy, is calculated
as follows D; j, = ©; 1, + Oy ;. The subject S; is grouped with
the cluster centering on Sj, where D; ;. is maximum. This ensures
that only those subjects which have a large number of policies in
common are grouped together. In general, the clustering is more
effective when the number of shared policies is large, i.e. when
L[IP;NTP] is large. The number of clusters V. should be chosen
carefully. The larger the value N¢, the lesser visible will the effect
of reordering be. This is more evident when we consider the fact
that as N. approaches L[S], we essentially experience the initial
effect of having L[S] unique categories for each of the subjects.
On the other hand, should N. be too small, the improvement
obtained by categorization is completely lost, because as N.
approaches ’1°, all the subjects belong to the same cluster. In
other words, there are no clusters at all.

This algorithm allows us to tune our optimization approach
such that we can either maximize the improvement due to clus-
tering or due to reordering, or both, based on the specific context.
In general, the improvement due to clustering and categorization
is most apparent when there are very large policies to process. On
the other hand, for extremely simple policies with only one or two
subjects, reordering is more helpful. In this scenario, reordering
saves valuable execution time because by reordering, we can
ensure that the policy does not do a brute force search to evaluate
all the rules.

imi:h

Sa

(ps)
‘? ®
] [[(2] [
all Sa
(b) Vzew(PS, Sa)

(bs)

® ®

ool

a Se Se

®

®)
E

Sd Se Sa Sa,Sp

60
-iih

all sy sq all
(e) View(PS,sq)

,
all

all
View(PS, se)

V. EXPERIMENTAL RESULTS

Our experiments were performed on a MacBook Pro running
Mac OS X 10.5.5 with 4GB of RAM and a 2.4GHz Dual Core
Intel processor. Experiments were conducted on both synthetic
policies and real world-based policies. The synthetic polices were
divided into two sets of test suites. The first test suite deals
with XACML policy sets where subjects have a small number of
applicable rules. The second suite investigates policy sets where
subjects have a large number of applicable rules, and will show
the significant effect of applying our reordering technique to large
policy sets. In other words reordering will not have a big effect
if on a policy with only 2 rules, whereas it will make difference
with a policy that has say 100 rules or more.

The real world-based policy sets are policies built using existing
data sets, and properly modified to fit our framework without
changing the semantics -or the structure- of the policies. Precisely,
we tested the policies by Fisler et al. [4], which they used for
their Margrave tool. Our experiments ensure that all policies are
loaded into memory before executing any request evaluations.
This ensures that evaluation times are not skewed by any policy
loading time. All tests were conducted using 100,000 randomly
generated XACML requests. All requests have a single value
for the subject, resource, and action. Using the real world-based
policy sets and the synthetic test suites, we performed extensive
experiments to investigate the performance enhancements yielded
by our proposed categorization and reordering techniques. We
also compared our results with Sun’s PDP engine results.

Our experimental process includes two main stages; first, the
setup stage and second, the actual request evaluations. The setup
stage includes three sub-stages:

S1. Categorization of the experimental policy sets. Categoriza-

tion is performed as explained in Section IV. The number of

categories used for each policy set ranges from N to N/10,

where N is the number of unique subjects within a policy

set,

Training stage that collects the results of request evaluations

(permit, deny, not-applicable, indeterminate) subsequently

used for the reordering stage,

. Reordering policies within the policy set and all rules within
each policy according to the statistics we gathered during the

S2.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

training stage.

The setup stage needs to be executed only once, however the
sub-stages (S2) and (S3) could be executed repeatedly to retrain
and reorder the policies and rules to achieve better performance.
For our tests, we chose not to repeat the sub-stages, and thus
measure the performance in the worst case scenario. The results
of categorization and reordering are cached in memory. During
the second stage the access requests are actually evaluated, using
the ordering and categories set up in the previous stage. The
processing time is the time needed to evaluate a request against
a policy subjected to our setup stage plus the time to make
a decision on that request. The preprocessing time is the time
needed to complete the setup stage.

When designing our framework we tried to introduce as few
changes as possible to Sun’s PDP for easy integration with
existing Sun PDPs. Our framework does not introduce a new
method for evaluating a request, the matter of fact is we use
the core of Suns PDP to do request evaluations. Hence, attribute
retrieval times apply to both our framework and Sun’s PDP
equally, and are considered as part of the total evaluation time of a
request. Our framework benefits from categorizing and reordering
policies/rules, which results in avoiding any unnecessary evalua-
tions and evaluating policies/rules that result in faster decisions,
rather than introducing a new method for evaluating requests.

The experimental results show that our framework is orders of
magnitude more efficient than Sun’s PDP, and the performance
difference between our framework and Sun’s PDP grows linearly
with the number of requests and number of rules within a
policy set. We discuss the test results in detail in the following
subsections.

A. Real World-Based policies

The experiments on real world-based policies used the policy
sets by Fisler et al. [4], specifically CodeA, CodeB, CodeC, &
CodeD. We also added another policy that we call CodeDMod,
which is an enlarged version of the policy CodeD. This policy set
contains 11 policies and 75 rules in total. We include this policy
in order to evaluate the performance of our framework with larger
real world policies. As highlighted by [8], it is difficult to access
large real world policies that are publicly available, due to the
confidential information these policies typically carry. Another
issue highlighted by other authors [7] is the fact that XACML
policies tend to get larger and more complicated with time, hence
we introduced CodeDMod to represent such a large policy.

Table I summarizes the results of the experiments done on the
real world-based policies. In all cases we obtain at least a 78%
performance improvement over Sun’s PDP. Despite the nature of
our framework which best suits large policies, our optimization
engine still provides a significant performance boost in the case
of smaller policies, e.g. CodeA is a policy set with only 2 rules.
The policy CodeDMod which is a much larger policy, shows a
performance boost of over 91% over Sun’s PDP. We also notice
the difference between using categorization only and the effect
of adding reordering to the framework. Reordering boosts the
evaluation performance up to 22% over using categorization only.
This is noticeable in the case of CodeDMod where reordering has
an effect on its 11 policies’ and 75 rules’ order. In the smaller
policy sets CodeA, CodeB, CodeC, & CodeD, reordering does
not provide a big performance boost over categorization only, but
still gives up to 8.5% better performance in the case of CodeA.

B. Synthetic Policies

We test our framework against large synthetic policies to
show the scalability of the framework and the high performance
that it provides in the case of very large policies. We divide the
synthetic policies into two test suites, each of which has policy
sets of sizes ranging from 400 to 4000 rules. The following
sections explain the test suites results in detail.

1) Test Suite I Results: This test suite deals with policy sets
where each subject has a few number of applicable rules. This
test case is used to emphasize the effect of our categorization
technique, whereas our reordering technique may have a minor
effect. This test suite uses policy sets of 4000, 2000, 1000, and
400 rules. For each policy set, rules are divided evenly among 100
policies. For the sake of testing the Permit Overrides combining
algorithm is used for all the test policy sets and policies. Using
this test suite our approach is 1638 times faster than the Sun PDP.

a) Results with Categorization Only: We carried out a first
set of tests only applying the categorization technique with no
reordering. The number of categories used for each policy set was
varied from N to N/10, where N is the number of unique subjects
within a policy set. The preprocessing time for this approach is the
time needed for categorizing a policy set (sub-stage S1.). When
using N categories, results show that preprocessing a policy set
of 100 policies and 4000 rules takes about 25138 ms and a policy
set of 100 policies and 400 rules takes about 913 ms. When N /10
categories are used, preprocessing times are 23464 ms and 487
ms for the 4000-rule and 400-rule policy sets respectively.

The experimental results demonstrate that the total processing
times for our approach is at least 172 times faster than Sun’s
PDP. For a policy set of 100 policies and 4000 rules while using
N/10 categories, it takes 973.1 ms to evaluate 100,000 random
requests, whereas Sun’s PDP takes about 1152460 ms. A policy
set with 400 rules takes 760.2 ms and Sun’s PDP takes about
130421.3 ms. When N categories are used, total processing
times are 714.6 ms and 624.6 ms for the 4000-rule and 400-rule
policy sets respectively. Figure 5(a) shows the complete results
when using categorization alone with respect to the number of
categories used, which range from 0 to 3000.

b) Results with Categorization plus Reordering: For this set
of tests, we applied the categorization technique, followed by
our reordering technique. The number of categories used also
range from N to N/10. We make use of all sub-stages within
the setup stage. Preprocessing time in this case is the time for
both categorization and reordering of rules. The results for this
set of tests are reported in Figure 5(b). The experimental results
shows that the total processing times for our approach is at least
171 times faster than Sun’s PDP. For a policy set of 100 policies
and 4000 rules while using N/10 categories, it takes 967.5 ms
to evaluate 100,000 random requests, whereas Sun’s PDP takes
about 1152460 ms. A policy set with 400 rules takes 763 ms
and Sun’s PDP takes about 130421.3 ms. When N categories are
used, total processing times are 703.7 ms and 616.2 ms for the
4000-rule and 400-rule policy sets respectively. Figure 5(b) shows
our complete results when using categorization plus reordering
with respect to the number of categories used. Figure 5(c) is
a comparison between our approach with categorization plus
reordering and Sun’s PDP. The plot representing our approach
is an average of the best and worst case we obtained from using

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

8
Policy #Rules Sun Categorization | Categorization & Reordering | Cat.-Only Boost | Cat.+Reordering Boost
CodeA 2 867 152 139 82.47% 83.97%
CodeB 3 1007 191.3 191 81% 81.3%
CodeC 4 1007.5 200.1 200 80.14% 80.15%
CodeD 5 1150 249 242.8 78.35% 78.89%
CodeDMod 75 32223 3474 2709 89.22% 91.59%
TABLE T

REAL WORLD-BASED EVALUATION RESULTS IN MILLISECONDS

1000 T T T T T

—— 4000 Rule Policy
—+— 2000 Rule Policy
950 —=— 1000 Rule Policy ||

—=o— 400 Rule Policy

850

750

Total Processing time (ms)

650 - .

1000 1500 2000 2500 3000

Number of Categories

0 500

(a) Effect of categorization on evaluation time w.r.t # of cate-
gories used with no reordering.

1000 T T T T T

—— 4000 Rule Policy
—+— 2000 Rule Policy
—=— 1000 Rule Policy
—=o— 400 Rule Policy

900 -

850

800 -

750 [

Total Processing time (ms)

650 - b

1000 1500 2000 2500 3000

Number of Categories

0 500

(b) Effect of categorization and reordering on evaluation time
w.r.t # categories used.

x10
107 ‘ ‘ . . ‘ : ‘ 3 ; ; ‘ ‘ ‘ ‘ ‘
—— Sun PDP
Categorization + Reordering | - -
251

__10°: 4
m —
E E
Y S 2
IS o
= 10°k 4 E
o
= o
5 £ 15+
(73 (7]
® «
O 4 ©
o 10°t 1 5
e s 4L
S ©
°© o
= 3

107 ey § 051

102 L L L L L L L L O i i i i i i i

0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000

Number of Rules

(c) Evaluation times comparison between our approach and
Sun PDP.

Fig. 5. Experimental Results for Test Suite 1.

different numbers of categories. The results obtained by this set
of tests report a very slight performance improvement due to the
reordering.

Reordering rules is not a significant factor to performance because
of the low number of rules applicable to each subject. Reorder-
ing’s effect can be better appreciated for policy sets with many
rules applicable to each subject.

With regards to preprocessing, our results show that prepro-
cessing time is proportional to the number of rules, as reported
in Figure 5(d). Preprocessing a policy set of 100 policies and
4000 rules while using N categories takes about 25158 ms, and
a policy set with 100 policies and 400 rules takes about 925 ms.
When N/10 categories are used, preprocessing times are lower,
23472 ms and 491 ms for the 4000-rule and 400-rule policy sets

Number of Rules

(d) Preprocessing times including categorization and reorder-
ing.

respectively. Our tests also show that the preprocessing times are
proportional to the number of categories used. More categories
lead to higher preprocessing times due to the extra processing
needed to match similar subjects to a common category. Next,
we present a second test suite highlighting the advantages of the
reordering effect.

2) Test Suite II Results: Our first test suite did not give us any
indications about the effect of reordering on the policy evaluation
performance.

This is due to the fact that most subjects had a small number
of applicable rules, which led to subjects having very small
policy/rule execution vectors. As a result, reordering only hap-
pened on small execution vectors, and therefore did not make a
significant difference.

Hence, we decided to generate a second test suite that could

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
IEEE TRANSACTIONS ON SERVICES COMPUTING

x 10*

—v— Categorization + Reordering

- I
- 5 [} &
T T T T

Preprocessing time (ms)

4
3
T

0 i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000
Number of Rules

(a) Preprocessing times (categorization + reordering).

3000

Total Processing time (ms)

—<— Sun PDP

Categorization + Reordering

— — — Categorization Only
T T

3500 4000 4500

10° !
0 500

| | | ;
1000 1500 2000 2500 3000
Number of Rules

(b) Sun PDP evaluation times compared to categorization only
and categorization + reordering.

—=o6— Categorization Only

T T T T T T
—s— Categorization + Reordering

__ 2500 gpeee—o T -

2000 -

1500 -

Total Processing time (ms

1000

v

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Number of Categories

(c) Performance boost from reordering w.r.t the # of categories

using a 4000-rule policy.

Fig. 6. Experimental Results for Test Suite 2.

allow us to observe the impact of reordering on performance. This
suite simulates a scenario where each subject within a policy set
is guaranteed to have a significant number of applicable rules.
This case might occur when a specific subject has high privileges
and has access to a high number of resources. In this case the
subject will have a high number of rules permitting him access
to these resources.

When reordering happens in such a scenario, there will be no
need to go over all rules within a subject’s category. As expected,
this test suite showed a significant performance advantage for the
categorization plus reordering approach over the categorization
only approach. We used policy sets of 4000, 2000, 1000, and
400 rules (different from the ones used in first test suite). For
each policy set, rules are divided evenly among 100 policies.
Overall, our results for this test suite show that our approach is
949 times faster than Sun’s PDP engine. Similar to the first test
suite, we conducted experiments using categorization only and
categorization with reordering.

a) Results with Categorization Only: The preprocessing
times for this case are inline with the times for the analogous
set of tests (Section V-B.1) of the first test suite. Precisely, when
using N categories, preprocessing a policy set of 100 policies and

4000 rules takes about 25397 ms and a policy set of 100 policies
and 400 rules takes about 978 ms. When N/10 categories are
used, preprocessing times are 28633 ms and 1075 ms for the
4000-rule and 400-rule policy sets respectively.

As in the previous test case, the results for total processing
times show a very significant improvement in performance over
Sun’s PDP. Our results indicate that our mechanism provides
at least 48 times faster evaluation. For a policy set of 100
policies and 4000 rules while using N/10 categories, it takes
2437.2 ms to evaluate 100,000 random requests, whereas Sun’s
PDP takes about 851477 ms. A policy set with 400 rules
takes 2272.2 ms and Sun’s PDP takes about 120230.3 ms.
For N categories, total processing times are 2517.6 ms and
2242.5 ms for the 4000-rule and 400-rule policy sets respectively.

b) Results with Categorization plus Reordering: Figure 6(a)
reports the preprocessing times for this approach. Our results
show that preprocessing a policy set of 100 policies and 4000
rules while using IV categories takes about 25902 ms and a policy
set with 100 policies and 400 rules takes about 1007 ms. When
N/10 categories are used, preprocessing times are 31052 ms and
1061 ms for the 4000-rule and 400-rule policy sets respectively.
Although the policies are different, we notice that the gathered

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

Content may change prior to final publication.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

times are very similar to the times recorded for preprocessing
the set of policies used for the first test suite (reported in Figure
5(d)). This observation leads to the conclusion that the prepro-
cessing time is not influenced by the type of policies used. The
preprocessing times are almost negligible when compared to the
highly significant performance improvement in total processing
times over Sun’s PDP, not to mention that preprocessing times
correspond to the setup stage of our framework which only occurs
once within a policy set’s lifetime or upon a client’s request.

Figure 6(b) compares Sun’s PDP total evaluation times with

our results from the second test suite. The total processing time
of our approach is at least 139 times faster than Sun’s PDP. As
shown, for a policy set of 100 policies and 4000 rules while using
N/10 categories, it takes 842.3 ms to evaluate 100,000 random
requests, whereas Sun’s PDP takes about 851477 ms. A policy
set with 400 rules takes 867.5 ms and Sun’s PDP takes about
120230.3 ms. When NN categories are used, total processing times
are 897.6 ms and 830 ms for the 4000-rule and 400-rule policy
sets respectively.
For the 4000-rule policy set used in this test suite, results indicate
that categorization plus reordering has a 65.4% performance
improvement over using categorization alone. Figure 6(c) shows
the performance boost reordering provides with respect to the
number of categorizations used. The figure shows that adding
reordering to categorization provides over 1.6 seconds of an
advantage over the use of categorization only.

We notice a slight improvement in performance when the
number of categories is reduced. This result is explained by the
fact that the policy set we used has many rules that are applicable
to all subjects, which means the resulting categories are not much
different from the original categories.

C. Adaptability of Reordering Approach

Figure 7, demonstrates how our reordering approach adapts
to the incoming requests received by the PDP. As mentioned
earlier in the reordering approach, we have a reordering process
that reorders both policies within a PolicySet and rules within
all policies. The reordering happens according to the number of
Permits/Denies a policy or rule triggers. Figure 7 shows how the
order of 10 policies within a PolicySet changes with respect to
time. The orders of policies ranges from 0 to L[F;], where L[FP;]
is the number of applicable policies for subject S; (The size of
a subject’s policy execution vector). Order O reflects the highest
ranked policy (the policy most requested). Figure 7 shows the
policies within a policy execution vector for a particular subject,
in this case subject S;. It is important to notice that each
reordering cycle (a single reordering process) is dependent on all
previous cycles. In Figure 7, to represents the initial time before
reordering, and ¢, represents the time at which n reordering
cycles have been executed (reordering of policies/rules based on
the evaluation results at t,,_1,¢,—2,...,tp). As time passes and
more reordering cycles occur, one can notice how the order of
some policies starts to settle at a certain position. For instance,
if one looks at policy Py, it gets pushed to order 9 at ¢y, this is
due to the low number of Permits/Denies returned by this policy.
Whereas if one looks at policy Py, it gets to order 1 and stays
there as it is requested very frequently. Policy P, settles after
t7. Other polices settle for a while and then get reordered as
the incoming requests might influence their order positions. The
ordering of these policies depends on the incoming requests and

10

how they trigger the accumulated number of Permits/Denies a
policy evaluates to. Each subject within a policy set will reflect a
similar adaptation process to the one in Figure 7, each of which
prioritizes their applicable policies and rules according to the
statistics from previous reordering cycles.

To clarify how the adaptation process would actually occur,
let us look into a case scenario e.g. a school. At the beginning
of a semester, most access requests would be driven by students
wanting to register for their courses. The adaptation process would
move policies/rules that are applicable to students and favor their
incoming requests to the top of a policy set, which will result in
faster evaluation times for such similar future requests. Within a
semester, where most midterms are given, many faculty requests
for inserting or updating student grades will be recorded. In this
case, the adaptation process will favor faculty requests by moving
policies/rules within a policy set to the top, and hence favoring
these requests. Whenever there is a flow of similar requests from
different subjects within the school, the policy set will adapt to
the best configuration that will result in the best evaluation results.

Average Evaluation Time (ns)

t 9 t 10

1
t0 t1 t2

t3t4 t5¢t6 t7 t8
Reordering Cycles

Fig. 8. Average Request Evaluation Time and Reordering Cycles.

Figure 8, demonstrates the average request evaluation times
for subject S; with respect to time. As the time proceeds, a
number of reordering cycles occur, hence influencing the order
of subject S;i’s policies within its policy execution vector and
rules within its rule execution vector. The reordering process
will push the most requested policies and rules that evaluate
to Permit/Deny up to the front of the corresponding execution
vectors. This will result in faster evaluation times as depicted
by our test results in Figure 8. Note that the average request
evaluation time gradually decreases as more reordering cycles
are executed and thus adapt to the incoming different request
trends.

Space Complexity. Concerning space complexity, our
framework is relatively efficient. After sub-stage a, the
categorized policy set will be cached in memory using a
Hashtable (H7). Hy will be of size Ne¢* L[IP¢]* L[R¢], where N,
is the number of categories used, L[IP.] the number of policies
within a category, and L[R.] the number of rules within P..

In section VI, we highlight some related work, and compare
their results with ours where applicable.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

11

10

Policy Order

\/\ -
\M/ !).

t 1 t t4

t_5 t_6

Reordering Cycles

Fig. 7. Policy Order and Reordering Cycles

VI. RELATED WORK

XACML 1.0 had been standardized by the OASIS Committee
in 2003 and ever since a lot work has been done on the analysis,
testing, verification and optimization of XACML Policies [13],
[10], [11], [2], [18]. Many have recently focused on issues related
to XACML optimization and analysis [11], [14], [2], [18]. In [11],
Liu et al. present one of the most interesting proposals on opti-
mization of XACML policies so far. Liu et al, focus on improving
the performance of the PDP by numericalization and normaliza-
tion of the XACML Policies. The numericalization is used to
convert the string policies into numbers. The authors posit that
since numerical comparison is more efficient, an improvement
in performance is achieved by numericalization itself. Further,
normalized policies are converted into a flat policy structure.
In doing this, the authors replace the different rule-combining
algorithms with only on, viz. First-Applicable. They then proceed
to convert the numericalized, normalized policies into tree data
structures for efficient processing. While this paper differs from
our work in the approach used to process the policies, we also
focus on reordering of the rules to achieve an improvement in the
performance of the PDP. In other words, the underlying concept is
the same: the brute force evaluation of a policy by the PDP can
be avoided, if the rules are reordered such that the rule which
is applicable to the rule combining algorithm is evaluated first
and the time for processing or evaluating not applicable rules
is saved. We identify two main differences between our work
and [11]. First, we rely on statistics, which help us defining the
best ordering process based on actual user requests. Secondly,
the authors unify all the rule combining algorithms into only
the First-Applicable, while we do not require such cumbersome
preprocessing stage.

Finally, although no complexity evaluation is given by Liu
et al., we believe our approach is more efficient in terms of
space complexity, since it does not rely on storing complex data
structures such as tables and trees.

Another work related to ours is [14], by Miseldine. Mis-
eldine proposes to achieve policy optimization by minimizing
the average cost of finding a match at the rule level the target

level and the policy level. The work assumes no changes to the
XACML specification, in that the Sun’s XACML implementation
is not altered. Its PDP and PEP engines remain the same. The
improvement is achieved by applying optimization techniques
to the policies themselves. Therefore, anyone who consumes
XACML remains structurally unaffected but anyone who gen-
erates XACML policies can generate an optimized output by
applying the optimization techniques outlined. The author also
builds on the same premise as us that, if a policy or rule is not
applicable to a particular target, it needs not be evaluated. The
main differences between [14] and our work arise in the way
we try to meet this premise. While we focus on the reordering
of rules and further on the categorization of the policies based
on both the policies and the rules, Miseldine approaches this
problem considering policy configurations. A policy configuration
is the relationship of policy and rule targets to members of the
set of rules R, the set of subject S and the set of actions A.
Combinations of sets are sought such that policy targets are
formed from S.R, R.A or S.A . The match at the rule level must
then reference the remaining unused set. Although interesting,
the improvements are drastically worse than ours. For example,
their optimized method takes around 200ms for evaluating 4000
rules, where with our techniques, it only takes 1 ms. A related
approach that has been proposed to improve the performance of
XACML evaluation is the recent work on detecting and removing
redundant XACML rules [9]. In [9] Kolovski formalizes XACML
policies using description logics (DL), and exploit existing DL
verifiers to conduct policy verification. Their policy verification
framework can detect redundant XACML rules. The idea of
removing redundant policies is interesting and may be useful
to boost the evaluation time. However, it is yet to be validated
whether the improvement will be worth the time needed to remove
redundant policies, and how significant the overall improvement
would be. If [9] were to be used as a means of enhancing policy
evaluations, the preprocessing time (Initial processing + verifying
a policy) for the Continue policy (306 rules) used by [4] takes
approximately 11 seconds, compared to our framework that takes
less than 2 seconds to preprocess a policy set of 400 rules, and

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

less than 10 seconds for a policy set of 2000 rules.

On the front of testing policies, the work by Martin et al.
[12] delves into the problems of defining and measuring policy
coverage when testing policies. The techniques presented in [12]
are very different from ours. However, in light of the extensive
testing needed to ensure that an improvement in performance
has indeed been achieved, we drew on the concepts in [12] to
ensure that policy coverage has indeed been achieved.

One related area where similar optimization techniques are
often explored is Firewall Filtering [5], [6]. In this respect, our
work on optimization of XACML policies shares some similarities
to the optimization of firewall filtering approaches. The major
differences between firewall optimization and XACML policy
optimization arise because in the case of firewalls, a major portion
of the traffic packets match a small subset of the firewall rules,
and the same distribution of traffic is maintained over a significant
period of time. This skewness is not experienced in the incoming
requests for an XACML policy. Besides, firewall rules, which
have dependencies on each other, have an order of precedence
defined, while rules in an XACML policies are not related. These
two properties of firewall rules allow the authors to prove in
[5] and [6], that the optimal firewall rule ordering problem is
NP-Complete. Despite these differences between firewall filtering
optimization and optimization of XACML policies, we can still
draw from the body of work on firewalls, specifically from [5].
We employ metrics similar to the ones used by the authors for
evaluating which rules would be most applicable to our policies.
Of the different metrics presented, we rely on the frequency of
the rules, as in [5]. Frequency is useful in predicting the best
match for a new incoming request which does not match any
existing categories. The metrics cannot be applied directly in our
context, as there are substantial differences between the packet
matching algorithm used for the firewalls and the categorization
and matching of requests required by our approach. The packet
matching is a simple, single level problem as the only requirement
is to match the packet’s header against the rule list and performing
the corresponding filtering. The rule frequency and recency are
then updated for the applicable rule. Our goal is more ambitious,
since not only we try to find which policy is applicable to an
incoming request but also we optimize the ordering of the rules
within the policy to match the request. In order to allow for this
type of matching, we categorize the requests at two levels. We
first categorize the request by subjects to see which policy would
be applicable to it and then we further find a match between
the request and the execution vectors for that policy. Execution
vectors are simply the order in which the rules in a policy are
applicable to a request.

Another area related to our approach for policy categorization
is packet classification [1]. While similar in spirit to the catego-
rization used by us, there are many differences between the two
approaches. In [1] structure of the packet classifiers is flat whereas
we need to categorize at the multiple levels of the policies and
the rules. Secondly, the rule combining algorithms in firewalls
are only first-match or multi-match as opposed to the many
different rule combining algorithms for XACML Policies. The
approach used for packet classifiers is therefore totally different
from the one employed by us for categorization. The approach
used in [1] focuses on modifying the rules and reducing the
number of entries needed to modify the rules in order to improve

12

packet classification efficiency. We do not need to focus on
modifying the rules themselves in XACML policies and our
categorization focuses on allowing us to reorder the rules for
improved evaluation efficiency by the PDP.

VII. CONCLUSIONS AND FUTURE WORK

XACML policies and their evaluation play a critical role
in many access control systems, where numerous requests are
received by large set of subjects. This calls for high performance
XACML policy evaluation engines. In this paper, we introduced
a novel optimization framework based on statistics and policy
set categorization. Our categorization technique, which is based
on the K-means algorithm, provides fast access to applicable
policies and rules for a certain subject. Reordering policies and
rules within a policy set ensures that request evaluations are done
on policies and rules that are most likely to return a positive
effect; hence, avoid examining all policies and rules which are not
likely to be significant for the access request being evaluated. We
showed through experimental analysis the enhancement obtained
for different set of policies of varying size and structures. Our
results show that our techniques outperform the policy evaluation
of the Sun PDP engine by orders of magnitude. Our framework
can be utilized for multiple purposes, besides optimization. For
example, our framework could successfully be employed as a de-
bugging or profiling tool for XACML policies. Our current system
could be extended so as to provide feedback to policy writers and
administrators about the behavior of the system they’re authoring,
possibly allowing the policy author to determine ordering, rather
than automatically set it. Further, as part of our future work,
in order to fully assess the potential of our work, we plan on
deploying our framework into a real world environment and
observe how it affects performance. Since our framework targets
very large policy sets, we would like to further investigate the
effect of evaluating very small policy sets, e.g., a policy set with
a single policy and a single rule. The initial results provided in
this direction in Section V-A are encouraging, although additional
extensive tests are required, to possibly identify aspects of the
system that can be further tuned to improve even in such cases.

ACKNOWLEDGMENT

This work was partially funded by the National Science Foun-
dation (NSF-CNS-0831360) and National Security Agency (NSA
H98230-07-1-0231).

REFERENCES

[11 Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet
classifiers in ternary cams can be smaller. SSIGMETRICS Perform. Eval.
Rev., 34(1):311-322, 2006.

[2] D. el Diehn I. Abou-Tair, S. Berlik, and U. Kelter. Enforcing privacy by
means of an ontology driven xacml framework. In IAS '07: Proceedings
of the Third International Symposium on Information Assurance and
Security, pages 279-284, Washington, DC, USA, 2007. IEEE Computer
Society.

[3] Facebook. http://www.facebook.com, 2007.

[4] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz.
Verification and change-impact analysis of access-control policies. In
ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 196205, New York, NY, USA, 2005. ACM.

[5] H. Hamed and E. Al-Shaer. Dynamic rule-ordering optimization for
high-speed firewall filtering. In Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications security, pages
332-342, New York, NY, USA, 2006. ACM.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON SERVICES COMPUTING

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(171

[18]

[19]
[20]

H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statistical opti-
mization techniques for firewall packet filtering. In INFOCOM 2006:
Proceedings of the 25th IEEE International Conference on Computer
Communications, pages 1-12, April 2006.

G. Hughes and T. Bultan. Automated verification of xacml policies
using a sat solver. In Proceedings of the Workshop on Web Quality,
Verification and Validation (WQVV 07), pages 378-392, 2007.

V. Kolovski and J. Hendler. XACML policy analysis using de-
scription logics. Submitted to Journal of Computer Security avail-
able at http://www.mindswap.org/~kolovski/KolovskiXACMLAnalysis-
JCSSubmission.pdf, 2008.

V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access control
policies. In WWW °07: Proceedings of the 16th international conference
on World Wide Web, pages 677-686, New York, NY, USA, 2007. ACM.
D. Lin, P. Rao, E. Bertino, and J. Lobo. An approach to evaluate policy
similarity. In SACMAT ’'07: Proceedings of the 12th ACM symposium
on Access control models and technologies, pages 1-10, New York, NY,
USA, 2007. ACM.

A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: a fast and
scalable xacml policy evaluation engine. In Proceedings of the ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 265-276, New York, NY, USA, 2008. ACM.
E. Martin, T. Xie, and T. Yu. Defining and measuring policy coverage in
testing access control policies. In In Proc. 8th International Conference
on Information and Communications Security, pages 139-158, 2006.
P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino. Xacml
policy integration algorithms. ACM Trans. Inf. Syst. Secur., 11(1), 2008.
P. L. Miseldine. Automated xacml policy reconfiguration for evaluation
optimisation. In Proceedings of the 4th International Workshop on
Software Engineering for Secure Systems, pages 1-8, New York, NY,
USA, 2008. ACM.

T. Moses. Extensible access control markup language (XACML).
Technical Report, OASIS, 2003.

MySpace. http://www.myspace.com, 2007.

R. Rivest. On self-organizing sequential search heuristics. Commun.
ACM, 19(2):63-67, 1976.

S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query
rewriting techniques for fine-grained access control. In Proceedings of
the International Conference on Management of Data, pages 551-562,
New York, NY, USA, 2004. ACM.

Sun XACML Policy Engine. http://sunxacml.sourceforge.net/guide.html.
I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. 2 edition, 2005.

13

Said Marouf Received a Masters degree in Software
Engineering from the University of Wisonsin - La
Crosse, in 2008. Currently working towards a PhD
degree in Information Technology at the University
of North Carolina at Charlotte. Research interests
include access control policy optimization & man-
agement within social networks and SELinux, secure
software development, and vulnerability analysis
within the Java programming language execution
environment.

Mohamed Shehab is an Assistant Professor of
Software and Information Systems Department at
the University of North Carolina at Charlotte. He
received his PhD degree in Electrical and Com-
puter Engineering from Purdue University in August
2007. His research and teaching interests are in the
broad areas of network and information security.
In particular, his research focuses on advancing the
state of the art in the design and implementation of
distributed access control protocols to cope with the
requirements of emerging distributed, Web Services,
Social Networks, and Peer-to-Peer Environments.

Anna Squicciarini is an assistant professor at the
college of Information Science and Technology, at
the Pennsylvania State University. During the years
of 2006-2007 she was a post doctoral research
associate at Purdue University. Squicciarini’s main
interests include access control for distributed sys-
tems, privacy, security for Web 2.0 technologies and
grid computing. Squicciarini earned her Ph.D. in
Computer Science from the University of Milan,
Italy, in February 2006. During her PhD she has
been a visiting scholar at the Computer Science
Department of Purdue University, at the Colorado State University, and at
the Swedish Institute of Computer Science. Squicciarini is the author or co-
author of more than 40 refereed journals, and in proceedings of international
conferences and symposia. She is an IEEE member.

Smitha Sundareswaran a first year Ph.D student
in Penn State’s IST Department. She works with
Dr. Anna Squicciarini. Her research interests include
Web Security and Privacy, Web 2.0 privacy and
Digital Identity Management.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on June 07,2010 at 15:52:44 UTC from |IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

