
Reducing Attack Surface on Cordova-Based Hybrid Mobile Apps

Mohamed Shehab Abeer AlJarrah
Department of Software and Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA

{mshehab,aaljarra}@uncc.edu

Abstract
Hybrid mobile application development is increasingly be-
ing adopted by the mobile development community since it
provides the answer to the challenge of having the right mix
of accessibility to mobile native features at an affordable de-
velopment cost. Apache Cordova library is an example of
a middle-ware that enables developers of different mobile
operating systems to access mobile native features through
web frameworks, such as HTML and JavaScript, which at
the same time introduces several security challenges. In this
paper, we highlight current security setting limitations of
hybrid mobile frameworks and propose a policy based ap-
proach to provide limited access to the different pages/states
of the app to mitigate the effect of possible attacks. In addi-
tion, we downloaded and analyzed 622 real hybrid apps, and
presented settings and security statistics.

Categories and Subject Descriptors D.4.6 [Security and
Protection]: Access controls; D.2.9 [Software Manage-
ment]: Software development

Keywords Cross-Platform, Apache Cordova, Access Con-
trol, Hybrid, PhoneGap

1. Introduction
The revolution of mobile technologies in terms of hardware
and software has created a shift towards investing more in
this landscape. One of the latest revolutions in this area was
the introduction of cross-platform mobile hybrid applica-
tion development which enables developers to code their
apps using the standard web stack (HTML, JS, and CSS)
that can access native device functions like-native then pack-
ages these apps towards multiple mobile platforms. This ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobileDeLi ’14, October 21, 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-2190-7/14/10. . . $15.00.
http://dx.doi.org/10.1145/2688412.2688417

proach proved to be a promising development solution for
building generic apps, supported by ready non-commercial
tools[10, 13]. As this approach is expected to be the future
of mobile development [7], many platforms are competing in
the cross-platform hybrid mobile development market based
on the services the platform provide to the developer such as
supported platforms, access to native device functions, back-
end support and other performance issues.

Apache Cordova is a middle-ware library that enables ac-
cess to native device functions by providing a set of APIs
that supports interaction with native device functions or
“plugins” through Javascript. This library is a key compo-
nent of many hybrid platforms including PhoneGap, IBM
Worklight, and App Builder.

In this paper, we analyze the architectural and security de-
tails of the Apache Cordova based frameworks and highlight
possible threats on Apps generated using these frameworks.
This study is based on current implementation of the latest
Apache Cordova version (3.5.0) released on (June 12, 2014).
Security of such platforms has recently gained the atten-
tion, several studies [1, 4, 8] have analyzed possible security
threats and have proposed possible solutions. In this paper,
our study focuses on the plugin access model implemented
by Cordova framework, which to the best of our knowledge
has not been addressed nor analyzed in previous studies. It is
important to analyze what security models are implemented
to protect user’s device against possible compromises, es-
pecially since all the threats of web based apps can easily
be transformed to hybrid apps. The current security model
of the Cordova framework provides a coarse-grained based
plugin access control model where access is granted at the
app level. In this paper we propose a page based access con-
trol model that enables developers to limit the access granted
to the different pages of the app. We summarize our contri-
butions as follows:

- We propose a framework that enables developers to have
more control over the plugins exposure to each page of
the app, and to specify access policy rules to control
plugin access.

- We analyze a repository of 662 hybrid (Cordova-based)
Android Apps in order to understand developers prac-
tices, apps structure and plugin usage patterns.

The rest of the paper is organized as follows: In Section 2,
we provide a brief background of hybrid mobile frameworks
and focus on the details related to the Apache Cordova li-
brary. Section 3 discusses the different security threats in
Cordova-based hybrid mobile frameworks. Section 4 de-
tails our proposed page based access framework. Section 5
presents detailed analysis of the downloaded mobile hybrid
apps. Section 6 provides discussion of the related work. Sec-
tion 7 discusses the future extensions and paper conclusion.

2. Preliminaries
Cross-platform hybrid mobile framework manages the con-
nection between the native app and the embedded web
browser component. It enables the app’s JavaScript to com-
municate with the native application programming interfaces
(APIs) to access native resources, such as the network, cam-
era, GPS and contacts. In addition, several frameworks pro-
vide several settings to control and setup the communication
channel between the embedded web browser component and
the hosting native app.

The web browser component is a user interface compo-
nent that can be embedded in a native mobile app to render
(HTML/CSS) content and execute JavaScript. This compo-
nent is available in different mobile frameworks, WebView
in Android, UIWebView in iOS, and WebBrowser in Win-
dows Phone. In this paper we will focus on Android plat-
form because of its openness; however, our discussion is
applicable to other platforms as well. The WebView com-
ponent uses the WebKit rendering engine to display web
pages, in addition the WebView component executes the
scripts (JavaScript) imported or included in the page. The
WebView is embedded in a native app that can control the
embedded WebView. For example, the native app can load
a URL in the WebView or execute JavaScript in the cur-
rently rendered page. Figure 1 demonstrates how the We-
bView loadUrl method can be used to load a specific URL
and execute JavaScript in the context of the currently ren-
dered page.

WebView webview = new WebView(this);
setContentView(webview);
webview.getSettings().setJavaScriptEnabled(true);
webview.loadUrl("http://www.uncc.edu");
webview.loadUrl("javascript:alert('hello');");

Figure 1: WebView example

The developer can customize the WebView’s behav-
ior through WebView clients (WebViewClient and We-
bChromeClient), which can be used to register event han-
dlers to respond to WebView events such as onPageStarted,
onPageFinished and onJsAlert. In addition, the native app

is able to receive data directly from the embedded Web-
View by injecting a native Java object into the WebView.
The object is injected into the currently loaded JavaScript
context and the object is accessible through the supplied
name. Through this Java to JavaScript interface, the injected
Java object’s methods are accessible from JavaScript. Fig-
ure 2 demonstrates how a native object is injected into the
WebView using the addJavascriptInterface method.

class JsObject {
public String save(String data) {

//save data
return "value";

}
}
webview.addJavascriptInterface(new JsObject(), "injectedObject");

Native Java

var value = injectedObject.save("data");
JavaScript

Figure 2: WebView javascript interface

2.1 Apache Cordova Library
There are several cross-platform frameworks that implement
Apache Cordova library, we focus on the PhoneGap frame-
work which is a popular framework that uses the Apache
Cordova engine as a middleware that provides APIs to es-
tablish communication channels between native code and
JavaScript. In this section, we discuss the details of the
hybrid PhoneGap apps that target the Android framework,
and we explain the details of the Cordova implementation
in the Android framework. Similar overall context applies
for other mobile frameworks that use the Cordova library.
The Cordova library defines the native (Java) to JavaScript
interfaces through the WebView interface. The native li-
brary provides native APIs that are developed as native
classes which are referred as plugins or features. These
plugins include the native code required to access native
device resources such as location services, camera, and con-
tacts. In addition to the PhoneGap provided plugins devel-
opers can create and include customized third party plu-
gins, which requires the definition of both native plugin
libraries and their corresponding JavaScript interfaces. In
PhoneGap the app configuration file (config.xml) is used
to specify the app settings, such as the plugins to be in-
cluded, the application orientation (landscape, or portrait)
and many other settings. Plugins are included in the app by
declaring feature tags specifying the plugin library in the
config.xml file, figure 3 shows an example config file which
includes the Accelerometer and Compass plugins. Note that
the org.apache.cordova.devicemotion.AccelListener, is
the native plugin class name which contains the plugin meth-
ods that access the native accelerometer APIs.

When the app starts the main activity, which hosts the em-
bedded WebView, initializes several components, loads the
app configuration, and loads the apps startup HTML page.
The CordovaActivity (also known as DroidGap) class is the
main app entry point. The following are the native and client

<widget id="com.phonegap.helloworld" version="1.0.0">
 <name>Hello Cordova</name>
 <description>A sample Apache Cordova app</description>
 <access origin="*" />
 <content src="index.html" />
 <author email="aaljarra@uncc.edu" href="http://liisp.uncc.edu">
 LIISP Team
 </author>
 <feature name="App">
 <param name="android-package" value="org.apache.cordova.App" />
 </feature>
 <feature name="Accelerometer">
 <param name="android-package"
 value="org.apache.cordova.devicemotion.AccelListener" />
 </feature>
 <feature name="Compass">
 <param name="android-package"
 value="org.apache.cordova.deviceorientation.CompassListener" />
 </feature>
 <preference name="loglevel" value="DEBUG" />
</widget>

Figure 3: PhoneGap config.xml file

(JavaScript) components included in a PhoneGap project
that are needed to enable the communication between native
side and web side:

• ExposedJsApi (Native): Global native object shared with
the WebView’s JavaScript through JavaScriptInterface.

• CordovaWebview (Native): The customized WebView.
During initialization the native ExposedJsApi is regis-
tered in the WebView by using addJavascriptInterface.

• PhoneGap Client Library (Client): The JavaScript library
that contains the PhoneGap client functions, and that
decodes the client API calls to javascript messages to be
sent to the CordovaWebView instance.

• CordovaChromeClient (Native): A WebView client that is
attached to the CordovaWebview which is used to register
event handlers associated with the WebView.

• PluginManager (Native): The central component in app’s
operation, it is responsible for the initialization of the
included app plugins, manages the mapping of the client
API calls to the corresponding native plugin APIs.

The client app (JavaScript) is able to send and receive
messages from the native components through the estab-
lished PhoneGap interfaces. When the client app issues a
request to listen to the compass heading, this is sent as a
message to the native code to execute the corresponding plu-
gin methods and ultimately send the compass heading data
to the client app.

Figure 4 illustrates the execution flow from the client
code to the native code and then back to the client code.
The flow starts when the client (JavaScript) app requests to
access a native resource (Step 1), in this example the app
is requesting to listen to the compass heading by calling
the client method compass.watchHeading() and providing
the method with parameters which include a callback func-
tion for success, a callback function for error and an ar-
ray of options (if needed). The compass.watchHeading()

is a wrapper method to an exec() function that triggers

WebView

ExposedJsApi - JavaScriptInterface

Plugin
Plugin.execute(...)

 JS - cordova_plugins.js

 JS-cordova.js

JS to WebView

JS to Java API Mapper

Application Logic (API Calls)
compass.watchHeading(onSuccess, onError,
 options);

prompt(argsJson,
'gap:'+JSON.stringify
([service, action, callbackId]));

loadUrl("javascript:"+JSMessage)

N
at

iv
eT

oJ
SM

es
sa

ge
 (M

es
sa

ge
 Q

ue
ue

)

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

JSMessage

CordovaChromeClient

Plugin Manager

9

1

2 3

4

5

6 7

8

Plugin Map

Figure 4: Plugin access control execution flow

a JavaScript prompt event (Step 2) that is captured by
the CordovaChromeClient which is initialized to handle
to the prompt event, see Step 3. In previous PhoneGap
versions (beforee 2.3), the exec() function used the in-
jected native object exposedJsApi but in later versions the
JavaScript prompt event was used. The event handler in
the CordovaChromeClient calls the ExposedJSApi.exec()

method and passes it all the received parameters indicating
the requested service, action, callback ID and other argu-
ments (Step 4). The PluginManger.exec() method is called
to resolve and call the plugin that should be activated (Step
5). During the app initialization the PluginManager loads the
config.xml and creates a plugin mapping table that maps
the service to a native plugin class. As indicated in Figure 3,
the feature tags are used to specify the native packages for
the included plugins. The PluginManager locates and in-
stantiates the corresponding plugin class and the indicated
action (method) is executed by the PluginManager (Step 6).
The plugin result is returned to the PluginManager (Step 7),
which then enqueues the returned result as a JavaScript en-
coded message into the message queue (Step 8). The mes-
sage is dequeued and loaded in the WebView which executes
the corresponding callback function with parameters being
the result of executing the requested plugin (Step 9).

It is important to note that plugins vary in their sensitiv-
ity and access to private information. Some plugins require
no native permissions and others require several permissions
in order to execute. The PhoneGap has an active community
and most enhancements are moving towards more security
checks and requiring more control on plugin access. After
releasing Cordova 2.8.0 (06/12/2013), the PhoneGap doc-
umentation added a privacy guide, which contains recom-
mended policies to be used by developers when using plug-
ins specially those accessing private information. Despite of
all the controls provided by PhoneGap to manage plugin ac-
cess, it is still possible to compromise apps and bypass these
checks as will be discussed in the following section.

3. Possible Security Threats
To configure the required permissions for a hybrid app there
are two main stages. The first step is to set up the permis-
sions granted to the native application hosting the hybrid

index.html contacts.html geo.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

Albert Brown

Adam Sandler

Anna Smith

Anna Long

Bob Harris

All the app pages have access to Contacts and Geolocation

(a) Current Cordova plugin access Model

index.html contacts.html geo.html

Welcome to the
Map Your Contacts

App

Review Contacts

Map Contacts

Albert Brown

Adam Sandler

Anna Smith

Anna Long

Bob Harris

None Contacts Contacts and
Geolocation

(b) Proposed Least Privilege Approach

Figure 5: Example Multi-Page App and Access Models

app, in Android for example, the native application permis-
sions should be declared in the AndroidManifest.xml file.
The second step is to set up the platform specific configu-
ration file (config.xml) to specify the plugins that should
be included in the app. Developers using Cordova versions
before 3.1.0 are required to configure the project manually
and this can easily cause confusion and result in misconfig-
ured and over-privileged applications. In addition, projects
created by these versions include all the plugins by default
in the config.xml file, which eliminates the second step, but
results in having plugins declared in the config.xml that are
not required by the app, hence, increase the attack surface
of the app. In addition, some plugins like the accelerome-
ter plugin do not required any permissions to execute which
enables attacker to access this plugin easily by calling it
through the Cordova bridge.

Later versions of Cordova use a minimalistic approach
since by default the config.xml file does not include all the
plugins by default and the application developer is required
to add the required plugins. In addition, Cordova provides
a Cordova Command-line Interface (CLI) scripting tool to
streamline the management of device level features and to
configure the project settings and permissions. In Cordova,
plugin access is set on the app level, i.e. declaring a plugin
in the config.xml file implies that the plugin is accessible
to any local and dynamic JavaScript files loaded in the Web-
View component. Thus malicious scripts are able to execute
with the same privilege irrespective to the page in which they
are loaded or executed.

The previous threats were due to the current imple-
mentation of Cordova security access model, other threats
arise due to the WebView implementation. The WebView’s
loadUrl() method can be used to load content and scripts
into the WebView. An app can load pages and scripts from
local and external sources which introduces several vulner-
abilities [9] as remote pages and scripts could be easily
loaded and gain access to sensitive information through-
out the native device services. In addition, dynamically
loaded JavaScript can easily introduce malicious code into
the app which will not be detected by the application vetting
process. To be able to control the source of loaded con-

tent Cordova uses a domain whitelisting security model.
The developer should specify the whitelist of allowed do-
mains, which is a list of trusted URLs. The access ele-
ment in the config.xml file specifies the allowed domains.
The default policy is to allow all local and external do-
mains, as indicated in the configuration file in Figure 3. The
wildcard <access origin="*"/> allows access to any ex-
ternal resource. In addition, it is possible to allow access
of resources from specific domains, for example, <access
origin="https://www.google.com"/>.

There are many threats [2, 3, 9] associated with us-
ing WebViews in mobile apps. The WebView loadUrl and
addJavascriptInterface methods can easily be used to in-
troduce back channels to give access to malicious apps [9].
For example, loadURL can also be used to inject malicious
javascript code into the WebView. Similarly event hijacking
can be performed by registering custom malicious event han-
dlers in the WebView client component, which can enable
attackers to override the app expected behavior. To reduce
the risk of these attacks, Cordova provides the developer
with configurations to white list the source of the loaded
pages and scripts and to control the plugins to be included in
the app. The app developers should carefully configure their
hybrid apps to ensure the correct security configurations.

4. Proposed Least Privilege Approach
The Cordova access policy allows the developer to spec-
ify a global policy to be adopted for the whole app, if the
app has multiple pages then all the pages have the same
access to all the plugins included in the app. This ap-
proach does not ensure the principle of least privilege [11],
since extra permissions and access to plugins are granted to
loaded pages that do not require such accesses. Figure 5(a)
shows our running example Map your Friends app which is
composed of three pages index.html, contacts.html and
geo.html. The index.html page displays the application
loading screen, it does not require any permissions/ plugin.
The contacts.html page displays the user’s contacts stored
on the mobile device which requires permissions to access
the contacts. The geo.html displays the user’s location on a

map and allows users to map their friends living near their
current location which requires access to the contacts and
location services. The current Cordova policy will grant the
three pages index.html, contacts.html and geo.html ac-
cess to the contacts and location services which doesn’t obey
the principle of least privilege.

We propose a framework that enables developers to build
and enforce page-based plugin access policy by slightly
modifying the Cordova library. Figure 5(b) shows the pro-
posed approach when applied to the Map your Friends exam-
ple app, where the index.html is granted no plugin access,
the contacts.html is given access to only the contacts plu-
gin and the geo.html page is granted access to the contacts
and geolocation plugins.

In order to implement the proposed framework in the
context of Cordova-based app, we require the app undergo
two main stages, namely the build and enforce stages. The
“build” stage, is a monitoring stage in which the applica-
tion’s access policy is composed and this stage is performed
during the application development and testing. The “en-
force” stage, is the policy enforcement stage in which the
composed policy in the build stage is enforced, this stage
is activated when the app is deployed. We extended the
config.xml file to include a new <policy /> element in or-
der to identify the current application stage which can be
build or enforce, see Figure 6.

<widget id="com.phonegap.helloworld" version="1.0.0">
 <name>Hello Cordova</name>
 <description>A sample Apache Cordova app</description>
 <access origin="*" />
 <content src="index.html" />
 <author email="aaljarra@uncc.edu" href="http://liisp.uncc.edu">
 PhoneGap Team
 </author>
 <feature name="App">
 <param name="android-package" value="org.apache.cordova.App" />
 </feature>
 <feature name="Contacts">
 <param name="android-package"
 value="org.apache.cordova.contacts" />
 </feature>
 <feature name="Geolocation">
 <param name="android-package"
 value="org.apache.cordova.geolocation.GeoBroker" />
 </feature>
 <policy stage= "build" />
 </widget>

Figure 6: Policy stage in config file

To implement the proposed approach, the following chal-
lenges should be addressed. First, how to build the plugin
access policy? Second, where to store the proposed pol-
icy rules? Third, where to implement the required reference
monitor? To address the first challenge, our proposed ap-
proach is based on monitoring the app’s behavior during the
“build” stage and to record the plugin API call traces for
each page, which includes the page URL, plugin name, and
plugin action. The “build” stage is performed during the de-
velopment and the testing phase and all accesses performed
during these phases are considered valid plugin rules, as a
result we are able to automatically build the policy rules

without requiring the developer to manually enter the policy
rules, which would avoid confusion and error. The main as-
sumption is that through app development and testing most
if not all possible plugin calls are covered as a normal test-
ing procedure. Figure 7(a) shows the build stage details. To
address the second challenge, the monitored app behavior
will be recorded, hashed and stored in a local in-app SQLite
database. The rule hashing is computed by computing the se-
cure hash (MD5 or SHA1) of the string concatenation of the
page url, plugin name, and the plugin API, the hash is stored
in the SQLite database. The access control model follows
the closed world assumption, where if access is not explic-
itly specified then it is assumed it is not granted. Once the
app development and testing is completed the app is released
with the database having the access policies, the policy flag
is set to “enforce” which stops writing to the database and
enables the authentication of every plugin access requests
against the policies saved in the SQLite database, Figure 7(b)
describes the enforcement stage. The change is transparent
to the developer, since it doesn’t require the developer to per-
form any extra steps regarding setting or enforcing policies.

To address the third challenge, we updated the implemen-
tation of PluginManager plugin mapping logic to accommo-
date the plugin access rules and to grant access only to the
pages specified in the policy stored in the database. When
the PluginManager receives a plugin execution request, it
retrieves the address of the currently loaded page by exe-
cuting the WebView’s getUrl() method and the Action re-
quested from the plugin. Then it checks if the stored policy
database contains a rule that grants the requested function
from the plugin to the currently requested page. If access
is allowed, then the PluginManager forwards the request to
the corresponding plugin, else it will not forward the request
and will generate a PluginResult that includes an illegal ac-
cess permission message, which will throw an exception in
the JavaScript. Figure 8 shows the reference monitor code
inserted in the PluginManager execute method.

if(onCreate(checkPluginRule(service, action, currentPage))){
//send request to selected plugin

} else {
Status status = PluginResult.Status.ILLEGAL_ACCESS_EXCEPTION;
PluginResult cr = new PluginResult(status);
app.sendPluginResult(cr, callbackId);
return true;

}

Figure 8: Proposed PluginManager Rule Check

5. Market Hybrid Apps Analysis
In this section we discuss the app analysis performed on real
PhoneGap apps to investigate the common patterns used by
hybrid apps in terms of file structure, plugins, permissions,
and security settings. The PhoneGap website [6] hosts a
repository linking to different app markets for apps devel-
oped using the PhoneGap framework. We have downloaded
all free PhoneGap Apps (662 apps) that were build over

geo.html
Apache Cordova Library

SQLite DB

1. call plugin

2. extract :
• page name
• plugin name
• function name

3. Hash values
4. Insert values

(a) Build Stage

geo.html
Apache Cordova Library

SQLite DB

1. call plugin
2. extract :
• page name
• plugin name
• function name

3. Hash tuple

4.Check

5. return result

(b) Enforce Stage

Figure 7: Build/Enforce Policy

Android from Google Play [5] and were recommended by
PhoneGap on Jun/2013. The apkdownloader (v.1.8.2) was
used to automate the download of the apps from Google
Play. The apktool (v.2.0) was used to extract files from
the downloaded apps which include AndroidManifest.xml,
config.xml and all application files under www folder. We
built a C++ tool to parse and extract information from the re-
trieved files, this information includes the app permissions,
plugin declarations, plugin usages and other configuration
details.

PhoneGap app architecture The choice to develop Sin-
gle Page App (SPA) or Multi Page App has been always a
decision that the developer needs to take even though that
most Hybrid platforms consider using SPA a good practice
for many reasons related to performance and simplicity. For
each of the apps downloaded we computed the number of
local HTML files (pages) used by the app and the similarity
between the different pages based on their accessed plugins.
Figure 9 shows that more than 58% of the scanned apps are
composed of more than one page, which shows that apps
tend to have multiple pages. The average number of pages
per app was 12.2 pages.

>1 HTML Page
1 HTML Page

58.6%

41.4%

Figure 9: HTML File App Count

To investigate the similarity between the app pages based
on their access plugins, we scanned the api calls in HTML/JS
source for each page and generated a feature vector describ-
ing the plugins used in the page. The feature vector x for
a page is a binary vector with xi = 1 if plugin i was used
and 0 otherwise. We computed the cosine similarity metric
sim(x, y) = x.y

‖x‖∗‖y‖ to compute the similarity between the
pages in the same app. Figure 10 shows the average page
similarity distribution for scanned apps, where as similar-

ity of 0 implies pages used disjoint plugin sets and 1 means
matching plugin sets. The overall average page similarity
was 0.46. The majority of the apps have a similarity in the
range [0− 0.5], which implies that different pages have dif-
ferent plugin usage requirements.

Page Similarity

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

Figure 10: PhoneGap dataset page similarity distribution

PhoneGap Plugin Usage vs. Declaration. We scanned
the api calls in HTML/JS source for each app and recorded
the used plugins. In addition, we scanned the configuration
files and recorded the declared plugins. Figure 11 shows the
comparison between the number of plugin declarations and
actual plugin usage. It can be concluded that there is a wide
gap between what is declared and what actually gets used,
for example 91.6% of the apps declare the GeoBroker plugin
and only 8% of these apps actually use this plugin. This over
declaration can be easily exploited by malicious scripts.

Access Origin Usage Patterns. Domain whitelisting is
the current security model adopted by PhoneGap to con-
trol access to outside domains and subdomains. This model
relies on the developer to provide the list of whitelisted
domains. For example, developers could grant access to
google.com by adding an <access origin="http://google.com"

/> to the whitelist. We extracted the access origin entries
specified in all the apps in our dataset, and we categorized
the access origin declarations into the following three cate-
gories: open or * which means app is open to any domain if
origin="*" was specified as an allowed access origin, local
if localhost is listed as an allowed access origin, and spe-
cific if a specific url was listed as a whitelisted access origin.
Figure 12 shows the different access origin category com-

Device

NetworkManager

Notification

Storage

FileUtils

FileTransfer

GeoBroker

AudioHandler

Capture

CameraLauncher

ContactManager

AccelListener

CompassListener

SplashScreen

Globalization

InAppBrowser

0 10 20 30 40 50 60 70 80 90 100

97.8%
20.1%

96.4%
8.8%

95%
12%

94.2%
15.3%

93.2%
2.8%

92.4%
2.8%

91.6%
8%

91.4%
4%

91.2%
0.6%

90.4%
5%

89.6%
2.8%

89.2%
3%

89.2%
2%

70.7%
3%

39.8%
1.4%

32.5%
8.4%

Declared Plugin

Used Plugin

Figure 11: Plugin declaration vs plugin usage

binations and their statistics presented, note that the grey
combinations show the risky settings, where 16.8% speci-
fied (*) access, 35.7% specified a (* & local) access, 0.8%
specified (* & specific) access, and 5.7% specified (* & lo-
cal & specific) access. Granting open (*) access is very risky
as this allows access to any domain. These results highlight
that 59% of the apps granted open access to any domain,
which is an indication that the developers are not config-
uring their apps correctly and are relying on the nonsecure
default PhoneGap settings. Apps granting open access to any
external domain are subject to dynamic script loading from
malicious sites.

(*)

(local)

(specific)

(* & local)

(* & specific)

(local & specific)

(* & local & specific)

Usage (%)

0 5 10 15 20 25 30 35 40

16.8%

30.2%

1.4%

35.7%

0.8%

9.5%

5.7%

A
c
c
e

s
s
 O

ri
g

in
 P

a
tt

e
rn

Risky Settings

Safe Settings

Figure 12: Access Origin usage distribution

6. Related Work
There has been several works in literature focusing on the
design of access control models for Web-based apps in dif-
ferent contexts. Jin et al. [8] addressed the security problems
encountered due the existence of bridges between Phone-
Gap and Android, those bridges break the protection that
was already implemented in the WebView because they cre-

ate holes in the sandbox of the WebView usage architec-
ture. They study the reduction of the permission reachabil-
ity without effecting business model so they designed a per-
mission based access control model to control permission
usage based on frames, it allow developers to assign differ-
ent permissions to different frames. The set of permissions
a frame is allowed to access is referred as the effective per-
missions. Their rules can be encoded in the HTML file or in
the AndroidManifest.xml file. The policy enforcement per-
formed by extending Android WebKit library to parse these
attributes or extending the AndroidManifest parser. Native
code is added to check for the rules before loading the page,
hence; the existing reference Monitor is extended to check
the effective permissions when an application tries to access
protected resources. Their work is mainly focused on imple-
menting a reference monitor in the Android Core, which is
only applicable to Android and cannot be easily extended to
other platforms for hybrid apps as it would require a major
change in the smartphone’s core libraries. In addition, the
use of permissions as a base of these access rules is mis-
leading to the developer as it would be much easier if ac-
cess rules are based on plugins which the developer is fa-
miliar with. For example, the geolocation plugin requires
the ACCESS COARSE LOCATION and ACCESS FINE LOCATION, it
would be much easier for the developer to use the plugin
name instead of specifying specific permissions.

Singh [12] has proposed an information flow model to
control access in hybrid apps. Singh proposed approach en-
ables developers to compose fine-grained, context-sensitive
policies. Singh’s model is mainly focusing on controlling
the information flow between the different sources, this ap-
proach can be combined with our proposed approach to en-
force more inter-component control.

Georgiev et al. [4] focuses on preserving the same ori-
gin policy (SOP) in hybrid apps. They demonstrated how
hybrid frameworks do not properly compose the access con-
trol policies governing web code (HTML/JS) and local code
(native code) highlighting that WebViews inside the app are
not governed by same origin policy. They introduced the
term Fracking which refers to any attack that allows foreign
malicious Javascript to drill through the defense layers and
gain unauthorized access to resources violating the same ori-
gin policy. They presented NoFrack, tool that enforces SOP
through using a local DB (SQLite) to store whitelisted do-
mains along with hashed id, they modified PhoneGap native
code and the JS libraries to initialize each iframe accessing a
domain with hashed id that will be later at run time to authen-
ticate access any call to the bridge by using the id whenever
a plugin call is executed.

Adappa et al. [1] address the security and privacy consid-
erations of a mobile user while executing mobile mashups.
They characterize the access control nature needed for
mashups to access mobile device resources, and design an
XACML based middleware to enable user control access

of mobile features and integrate it into an existing mashup
framework. Their middleware operates between the mashup
framework and the mobile OS. The proposed policy cap-
tures many attributes of the app and user, and it is discussed
that the framework is aware of the mashup and user’s con-
text. Their proposed approach introduces serious complex-
ity issues for users when configuring the proposed policies,
especially for complex apps that have many attributes. In
addition, the proposed protection layer is dependent on the
hosting mobile OS, which is not suitable for hybrid apps.

7. Discussion and Conclusion
Our proposed approach assumes that apps are composed of
multiple pages and that there is variation in terms of the
plugins requested by each page. However, we believe that
the same proposed approach can be also used on SPA apps.
In a single page app the object is still the plugin but the
subject here is not the page name but the page content.
The HTML content of the page being loaded at the time
a plugin is executed is the state that can be used to iden-
tify the subject. The Cordova library can be modified us-
ing similar approaches, but instead of extracting the page
name, it will extract the page fixed content, that is the lay-
out related after removing all user data dependent HTML
code. Android for example enables that through setting the
WebviewClient built-in event onPageFinished to inject
Javascript that calls document.innerHTML. This approach
might cause some restriction on dynamicly updating the app
UI, since it will generate different HTML content, nonethe-
less, this limitation can be avoided if the app went through
the build stage. Build stage will refresh the data base with all
possible interface states which will address this issue.

Ensuring the security of cross platform mobile apps is es-
sential to their success given their vast popularity. In this pa-
per we focused on the Apache Cordova library that is a com-
mon component used by most mobile hybrid frameworks to
enable them access device native features. We presented its
access control mechanisms and settings, and we presented
the limitations of the current security settings. We proposed
a framework that enables developers to automatically build
an access control policy to control the plugins accessible to
each page of the app and enforce these policy at app runtime.
Given that the Apache Cordova framework whitelists all do-
mains by default, it is important to carefully control device
plugins exposure to the outside world. We implemented a
prototype of our proposed approach. We analyzed a reposi-
tory of 662 PhoneGap Android Apps and presented app page
structure statistics, plugin declaration to usage statistics and
access origin patterns. Hybrid apps will continue to address
security and privacy issues, especially that it highly depends
on dynamic loading which eliminates the chances of detect-
ing malware behavior through conventional vetting process.
We consider this work as a step towards understanding this
ecosystem and adding more control on accessing device fea-
tures without effecting the app business model.

Acknowledgments
This research was partially supported by grants from the Na-
tional Science Foundation (NSF-CNS-0831360, NSF- CNS-
1117411) and a Google Research Award.

References
[1] S. Adappa, V. Agarwal, S. Goyal, P. Kumaraguru, and S. Mit-

tal. User controllable security and privacy for mobile
mashups. In Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications, HotMobile ’11, pages
35–40, New York, NY, USA, 2011. ACM.

[2] A. B. Bhavani. Cross-site scripting attacks on android web-
view. CoRR, abs/1304.7451, 2013.

[3] E. Chin and D. Wagner. Bifocals: Analyzing webview vul-
nerabilities in android applications. In In Proc. of the 14th
International Workshop on Information Security Applications
(WISA), August 19-21 2013.

[4] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing
origin-based access control in hybrid web/mobile application
frameworks. In In Proc. of 21st Annual Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2014.

[5] Google. Google Play. "https://play.google.com/

store/apps", August 2013.

[6] P. Inc. PhoneGap Inc. "http://www.phonegap.com/",
February 2013.

[7] R. v. d. M. Janessa Rivera. Gartner Says by 2016,
More Than 50 Percent of Mobile Apps Deployed Will
be Hybrid. "http://www.gartner.com/newsroom/id/

2324917", February 2013.

[8] X. Jin, L. Wang, T. Luo, and W. Du. Fine-grained access
control for html5-based mobile applications in android. In
In Proceedings of the 16th Information Security Conference,
2013.

[9] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on
webview in the android system. In Proceedings of the 27th
Annual Computer Security Applications Conference, pages
343–352. ACM, 2011.

[10] R. Mahesh Babu, M. Kumar, R. Manoharan, M. Somasun-
daram, and S. Karthikeyan. Portability of mobile applica-
tions using phonegap: A case study. In Software Engineer-
ing and Mobile Application Modelling and Development (IC-
SEMA 2012), International Conference on, pages 1–6. IET,
2012.

[11] J. H. Saltzer and M. D. Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE, 63(9):
1278–1308, 1975.

[12] K. Singh. Practical context-aware permission control for
hybrid mobile applications. In Research in Attacks, Intrusions,
and Defenses, volume 8145 of Lecture Notes in Computer
Science, pages 307–327. Springer Berlin Heidelberg, 2013.
ISBN 978-3-642-41283-7.

[13] S. Xanthopoulos and S. Xinogalos. A comparative analysis
of cross-platform development approaches for mobile appli-
cations. In Proceedings of the 6th Balkan Conference in In-
formatics, pages 213–220. ACM, 2013.

