
PERMITME: Integrating Android
Permissioning Support in the IDE

Emmanuel Bello-Ogunu and Mohammed Shehab
University of North Carolina at Charlotte

{ebelloog,mshehab}@uncc.edu

Abstract
One of the most common security & privacy issues concern-
ing mobile applications is the unnecessary access to sensi-
tive information and resources. In a mobile application plat-
form like Android, where a permission mechanism is used
to maintain access control, the app developer dictates what
permissions are necessary at install time. For various reasons
however, including user confusion and lack of proper docu-
mentation, developers may overcompensate for the neces-
sary permission. By this we mean developers often incorpo-
rate more permissions than are necessary for an app to func-
tion, thus undermining the access control mechanism and in-
creasing the potential risk from a vulnerability exploit where
sensitive user information is compromised. Even when de-
velopers intentionally include extra permissions, we believe
it still the duty of a developer to at least be aware of what
is at stake when it comes to collecting user information. In
this paper we present PERMITME, a tool developed as a plu-
gin for the Eclipse IDE, to interactively guide developers on
the set of required permissions when creating Android ap-
plications. We conducted a between-groups user study in or-
der to evaluate the effectiveness, efficiency, and usability of
the PERMITME tool in enhancing the developer’s experience
when deciding to include Android permissions in their mo-
bile applications.

Categories and Subject Descriptors D.4.6 [Security and
Protection]: Access Controls; K.6.5 [Security and Protec-
tion]: Authentication

Keywords Android, permissions, software development,
least privilege

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ETX ’14, October 21, 2014, Portland, OR, USA..
Copyright c© 2014 ACM 978-1-4503-2530-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2688130.2688135

1. Introduction
Android provides a number of security features in its OS to
reduce the frequency and impact of security issues among
the plethora of apps made available to the public [6]. For ex-
ample, a key design point of the application framework is
that all applications, both pre-installed and third-party, are
executed in a sandbox, meaning they are run in isolation
from other apps. This forces all apps to explicitly request
to share resources and data, and the only way to do this is
to abide by a “permission” mechanism, where they statically
declare the permissions they require to access protected APIs
on the device. These permissions range from reading or writ-
ing the user’s private data and connecting to the internet, to
keeping the device awake or causing it to vibrate on cer-
tain events. Furthermore, the protected APIs include Camera
functions, Location data (GPS), Bluetooth functions, Tele-
phony functions, SMS/MMS functions, and Network/data
connections. The user is then prompted to consent to the re-
quested permissions at install time. It is interesting to note
that Android does not grant permissions dynamically–at run-
time–because of the belief that this will interrupt the user
experience, further jeopardizing overall security [6].

Though there is evidence that presenting permission in-
formation to the user in a clear, more context-dependent way
can influence mobile phone users in choosing apps that re-
quest fewer permissions [10], ultimately users still tend to
make poor privacy and security decisions [1]. Moreover, pre-
vious research in the general area of usable security states
that the burden of preserving privacy should not be placed
solely on users [5]. As a result, we believe that code devel-
opers should take some responsibility in safeguarding users’
privacy and preventing data leakage. One way to do this is
by enforcing the concept of “least privilege” [11] in appli-
cation development. Specifically, this principle deals with
providing the minimal amount of access to information and
resources necessary to accomplish an objective. In this con-
text, we are addressing the permission model in Android ap-
plications. Fewer permissions means a more effective per-
mission system [12, 15], so developers should apply this
concept to the permission model. We believe the support

of a plugin within an Integrated Development Environment
(IDE) like the “Eclipse” platform that coaches users in situ
can aid in this endeavor. Moreover, tying the permission
metadata to the actual application code can be especially
critical when the app changes over time, since it might oth-
erwise accumulate stale permissions.

Given that previous research in the specific domain of
mobile application security has suggested this “least privi-
lege” concept before [2, 7, 13] but has not provided a full
empirical study with users to support these claims, we in-
tend to conduct a series of user studies in order to determine
whether the use of an Eclipse plug-in built to provide feed-
back on missing or extraneous Android permissions can help
developers code their apps with a better concept of ”least
privilege” in mind. In this preliminary study, we survey par-
ticipants who develop Android apps in order to measure how
useful and usable the plugin is in providing the right cues or
guidance. The applications used for evaluation were small,
to demonstrate that even with minimal interaction with the
plugin, we can begin to instill privacy-preserving behavior.

2. Android Permission Model
Categorizing Permissions. Android permissions can be de-
fined by two different categories: Protection Level and Func-
tionality Group [15]. There are four main Protection Levels:
Normal, Dangerous, Signature, and signatureOrSystem.
Normal permissions present minimal risk to Android apps
and are granted automatically without need of the user’s
explicit approval. Dangerous permissions allow access to
personal sensitive information and various device features.
These permissions are the only ones displayed to the user, as
they always require user consent. Signature permissions
are those associated with apps that are signed by the device
manufacturer’s certificate only; these comprise the highest
permission level. Lastly, signatureOrSystem permissions
are granted to apps that are in the Android system image
or signed with the same certificate. It is important to note
that third-party apps are only permitted to use Normal and
Dangerous permissions, while pre-installed apps may use
permissions from all four protection levels.

Using and Enforcing Permissions. In order to request
the appropriate permissions to access protected APIs, you
must declare them in the Android Manifest XML file of
an application’s source code. Figure 1 is an example from the
Android Developers documentation of how to make such a
declaration [6]. These are optionally granted at install time,
and can be enforced at a number of points during the app’s
operation, including: (1) at the time that a corresponding
API call is made, (2) when the app is starting an activity
(such as using Intents), (3) when accessing and operating on
a Content Provider, which shares data between applications,
and (4) during both sending and receiving broadcasts.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapp"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="18" />
 <uses-permission android:name="android.permission.RECEIVE_SMS"/>

</manifest>

Figure 1: Declaring a permission to monitor incoming SMS
messages (from the Android Developers site)

3. Our Proposed Approach
We propose PERMITME, which is a tool built as a plugin
for the Eclipse IDE for static analysis on Android applica-
tions. It is meant to enforce “least privilege” by providing
feedback to developers on missing or extraneous Android
permissions. Currently the Android ADT does not have any
built-in support for permission management, but our plugin
supports both Eclipse ADT and the standard Eclipse Java
EE platform. It is comprised of an API-permission mapping
database and a static analysis engine. The API-permission
mapping database was composed by combining the map-
pings generated by both STOWAWAY [7] and PSCOUT [2].
In this way, our mapping contains the different mappings for
each of the Android versions from 2.6 to 4.0. These map-
pings are stored in a predefined text file which is used to gen-
erate a HashMap at the start of the plugin, which is stored in
a static variable so that it can be referenced throughout the
project. The map is of type HashMap<String, APIBean>,
where the String is an API and APIBean is a Bean having a
list of all the permissions associated with that API.

An initial implementation of PERMITME relied on an Ab-
stract Syntax Tree (AST) to scan Java source files and find
API calls associated with the app. An AST is a detailed tree
representation of the Java source code, which is provided
by Eclipse as a part of its Java Development Tools (JDT)
parser[14]. The AST generated actually defines API to mod-
ify, create, read and delete source code. Each Java source file
is represented as a subclass of the ASTNode class, and each
specific AST node provides additional information about the
object it represents. However, we found that working with
the generated AST did not provide the full signature of meth-
ods as we expected them, which would cause trouble when
trying to identify the exact API methods being called in the
source code. Due to this limitation, we moved away from
using AST, and instead relied on another method to allow
the static analysis engine to scan class files. Therefore the
plugin analyzes the corresponding byte code using a Visitor
design pattern implementation of the ASM Java manipula-
tion library [4].

Since we need to capture each class instances and their
underlying methods we use ASM to detect the API meth-

ods of the project. ASM provides two visitors: ClassVisi-
tor and MethodVisitor which helps in identifying the API
methods. The plugin locates the .class files and each one is
read using a ClassVisitor, which identifies all the method in-
stances present. For each method identified a MethodVisi-
tor is invoked, which cross-checks it against the list of all
the API methods stored in the predefined mapping. If any
method matches from the list, the corresponding permission
is stored. This stored permission is checked against the cur-
rently requested permissions in the app, which are extracted
by parsing the AndroidManifest.xml file, to see which are
used (required) or unused (extraneous). If it is not present,
these are considered missing, and a marker is generated in
Eclipse at that point. The method visitor also identifies the
line number and the source of the method. While generating
the marker, a quick fix is also provided at that line to resolve
the marker. A resource change listener is attached to the plu-
gin so that any changes to the markers or the manifest file
are captured in real time and the corresponding markers are
updated.

In addition to the markers, the plugin uses the console
to present the developer with a summary of all the current
markers in both the code and the AndroidManifest.xml

file, as in Figure 2(e). This summary includes the currently
existing, required and the redundant (extraneous) permis-
sions. The developer can also use this summary to activate
a Quick Fix. Any Missing permission-related error will pre-
vent the code from being built, until the developer corrects
the issue and reruns the plugin.

4. Methodology
We recruited 20 participants from a Mobile Application
Development course being taught during the Fall 2013
semester. Of them, 60% reported an Advanced level or
programming knowledge/expertise, 35% reported Moder-
ate, and 5% reported Novice. We performed the study in an
on-campus lab; participants were given debugging-related
tasks for two Android applications, one requiring one per-
mission, and the other requiring four, and both having extra-
neous ones. Participants were randomly assigned to one of
the two conditions, either with or without use of the plugin.
They were observed unobtrusively, and made aware at start
of the survey that results were anonymous. Time to Com-
plete, along with Number of Missing Permissions and Num-
ber of Extra Permissions, are the measures upon which the
study results were evaluated. Additionally, the survey results
provided an evaluation of the Usability of the PERMITME
plugin, in the areas of Ease of Use, Trustworthiness of re-
sults, Effectiveness in accomplishing what was intended, and
Readability of output. We hypothesize that the PERMITME
plugin is more efficient, effective, and usable in helping a
developer reduce the number of extraneous permissions and
incorporate any missing permissions than other resources.

5. Results
5.1 User Study Results
Accomplishing the user study tasks consisted of finding the
missing permissions and correcting the code in a way that al-
lowed it to run successfully. For task 1, the mean completion
time for participants who did not use the PERMITME plugin
was three times higher than those who used the plugin. Since
not all of our participant data was normally distributed, we
used the Mann-Whitney-Wilcoxon Test to compare the two
groups, which still confirmed this was a statistically signif-
icant difference (p-value <0.001). With Task 2, we found
similar results, with a Wilcoxon test producing a p-value
<0.001. Given that completion time is our measure of ef-
ficiency, these results support our hypothesis. Table 1 shows
the mean time comparisons for tasks 1 and 2.

There was no significant difference between the Missing
Permissions and Extra Permissions for Task 1. This was ex-
pected given that there was only one Missing permission and
one Extraneous permission. For Task 2, the mean Number of
Missing Permissions for non-plugin users was 2.7, and 0 for
plugin users. Using a Wilcoxon test, we found statistically
significant difference between the two groups (p<0.001).
The mean Number of Extra Permissions for non-plugin users
was 1.1, and 0.4 for plugin users. Using a Wilcoxon test,
we found statistical significance between the two groups
(p<0.05). This also supports the claim of effectiveness in
our hypothesis.

Table 1: Comparison Results for Tasks 1 and 2

Measure Without Plugin With Plugin p-value
(µ, σ) (µ, σ)

Task 1
Time (seconds) (722.5, 194.75) (234.8, 35.14) < 0.001
No. Missing Perms (0.1, 0.32) (0.0, 0.0) 0.3434
No. Extra Perms (0.1, 0.32) (0.1, 0.32) 1
Task 2
Time (seconds) (792.3, 239.51) (406.6, 115.41) < 0.001
No. Missing Perms (2.7, 1.16) (0.0, 0.0) < 0.001
No. Extra Perms (1.1, 0.88) (0.4, 0.52) 0.046

5.2 Survey Results
In this subsection we present the survey results that inves-
tigated our plugin’s ease of use, trustworthiness, effective-
ness, and readability. The exit survey included a number of
5-Point Likert-scale questions concerning the usability of
our plugin, comparing it to online resources (ex. Stack Over-
flow), and the Android logging tool (LogCat). The results of
the Wilcoxon tests performed on these question responses
are presented in Table 2.

When comparing our plugin to online resources, there
was no significant difference with regard to Trustworthiness,
Effectiveness, and Readability. However, there was a signif-
icant difference (p-value <0.05) for Ease of Use, indicating
that our plugin was easier to use when compared to online

(a) Running the Plugin (b) Marker Indicating Permission Related API Calls

(c) Right-click to Access Quick Fix (d) Permission Added to Android Manifest Addition

(e) List of Permission-related issues in code

Figure 2: Plugin Screenshots

resources. This can be attributed to the difficulty and com-
plications involved in filtering through solutions from online
resources such as Stack Overflow. These results are satis-
factory, given that the average scores were relatively high,
demonstrating that the plugin is as good as available online
resources with regards to those three measures, and our plu-
gin was significantly better as far as Ease of Use.

Table 2: Comparison with other Help Resources

Measure Online Resources Our Plugin p-value
(5 Point Likert-Scale) (µ, σ) (µ, σ)
Ease of Use (3.86, 0.51) (4.50, 0.71) 0.0239
Trustworthiness (4.38, 0.72) (4.30, 0.82) 0.8154
Effectiveness (4.38, 0.81) (4.60, 0.69) 0.4602
Readability (4.50, 0.73) (4.40, 0.84) 0.7607
Measure LogCat Our Plugin p-value
(5 Point Likert-Scale) (µ, σ) (µ, σ)
Ease of Use (3.10, 1.29) (4.50, 0.71) 0.0090
Trustworthiness (4.10, 0.74) (4.30, 0.82) 0.5744
Effectiveness (3.60, 1.07) (4.60, 0.67) 0.0258
Readability (2.80, 1.14) (4.40, 0.84) 0.0024

Considering the comparison between PERMITME and
LogCat, the measures that proved significantly different in
favor of the plugin were Ease of Use (p-value=0.009), Effec-
tiveness (p-value=0.0258), and Readability (p-value=0.0024).
This is an expected result as it is very difficult to read and
use the Android LogCat output. Since Trustworthiness of
LogCat and the plugin had means of 4.1 and 4.3 respec-
tively, this meant the suggestions our plugin offered were as
trusted by the users as that of the Android logging platform.
Overall, the feedback provided by the plugin was received
as well as or better than many of the common resources that
developers rely for assistance, so this supports the usability
claim of our hypothesis.

Overall, the permission related feedback provided by the
plugin was received as well as or better than many of the
common resources that developers rely for assistance, so this
too supports our hypothesis, which stated the PERMITME
plugin would be more usable than the other resources.

5.2.1 Qualitative Feedback
In addition to the quantitative responses obtained from the
survey, there were snippets of textual feedback provided by
users in the last question of the survey. This open-ended
question asked for any additional comments about the plu-
gin/user study. The responses were valuable not only in sup-
porting our hypotheses, but also in providing potential solu-
tions for improving the usability of the plugin. Below are a
subset of the responses provided.

“I found the plugin to be very useful. Normally de-
veloper tends to add the required permissions in the
manifest file but forget about the permissions that are
extraneous. Making the use of this plugin [accessible]
will allow users to get notified about the extraneous
permissions.”

“Really good plug-in, I love it.”

“Logcat integration would help in the debugging pro-
cess. I go there first when looking for a problem, but
Logcat doesn’t indicate it’s a permissions problem
causing the error, just a ’null pointer’ exception.”

6. Related Work
IDE Support. A very popular tool developed a few years
ago to detect bugs in software is known as FINDBUGS. This
open-source program was developed by researchers from the
University of Maryland. Unlike most formal methods, which
focus on automating detection through narrow, sophisticated
analyses, FINDBUGS focuses on using simple, broad tech-
niques based on actual bugs in code, in order to better un-
derstand what kinds of bugs exist. [8]. Empirical results
were presented on the effectiveness of FINDBUGS on real
programs being used in production environments; this was
based on an analysis on the number of findings that could be
considered as false positives, harmless bugs, dubious bugs,
or genuinely serious bugs. The target was that at least 50%
of all reported bugs be genuine, and after many iterations
[3, 9], positive results on the quality and significance of the
code bugs were reported, but the research lacked an analysis
of the usability of the tool, particularly considering develop-
ers of different expertise levels.

The research by Xie et al. [16] deals with a plugin for
Eclipse that can detect and address common web application
vulnerabilities, such as improper input validation, broken ac-
cess control, and cross-site request forgery. This interactive
approach is known as the Assured Software IDE (ASIDE)
and it relies on two key techniques to aid programmers: in-
teractive code refactoring and interactive code annotation
[16, 17]. The idea here is that the aid developers receive
should be provided as an in situ reminder, instead of after the
program has been written. ASIDE achieves this by contin-
uously monitoring activity and statically analyzing portions
of the code at a time, in order to promptly provide feedback
to code edits [16]. Like FINDBUGS, a critical component of
determining the effectiveness of this plugin is the measure
of its ability to find genuinely vulnerable code. Evaluation
was conducted on commercial software through two com-
parison user studies between novice and professional devel-
opers [17], which highlighted some key issues in providing
interactive support, including the need to more easily under-
stand, address, and even dismiss provided warnings through
the plugin.

Permissions & Privacy. Au et al. developed a version-
independent permission plugin called PSCOUT–short for
Permission Scout–that performs static analysis to retrieve
the permission specification from Android applications [2].
Evaluation was done with a sample of 1,260 applications

on the basis of completeness and soundness in determin-
ing overprivileged apps. It was compared against another
research tool called STOWAWAY [7], and PSCOUT proved
to be significantly more complete and sound in permission
mappings, but ultimately there was no significant difference
in overprivileging. PSCOUT is not without limitations how-
ever. It can’t handle some API calls that are invoked through
reflection (though admittedly neither can ours, as this is an
open problem in Android development). The intent of this
tool is different from ours, in that PSCOUT is simply a per-
mission mapping plugin, whereas PERMITME is a plugin
that uses a permission map to compare against API calls
found in a developer’s code, and assists them in adjusting
their application’s permissioning in order to require only
what is necessary.

Vidas et al. also developed an Eclipse plugin called PER-
MISSION CHECK TOOL, that extracts the Android permis-
sion specification from an app and aids developers in uti-
lizing least privilege during permissioning [13]. The func-
tionality of the PERMISSION CHECK TOOL is similar to
that of PERMITME. However, a major difference lies at the
implementation level. Their API-to-permission mapping is
built by parsing the Android API documentation, which is
known to be incomplete. Furthermore, the plugin strictly an-
alyzes source code, and there is no ready library or dataset
of Android application source code readily available, so they
did not present extensive empirical analysis of the plugin.
Lastly, its permission map only covers Android 2.2. The
PERMITME plugin described in the previous section is an
improvement over the PERMISSION CHECK TOOL, with
empirical data collected to support this claim.

7. Conclusion
In this paper, we presented PERMITME, a tool developed for
integration within the Eclipse IDE for the purpose of devel-
oping more privacy-sensitive Android applications. This is
accomplished by enforcing the principle of “least privilege”
through minimization of permissions requested by an app.
This work is being done in response to the need for a reduc-
tion in over-privileged apps, which comes largely from the
need of developers to take on the responsibility of preserv-
ing user privacy, and the lack of clarity and completeness in
Android and third-party API documentation when it comes
to development. Our research does more than highlight this
void, but makes an attempt to fill it through the use of our
tool, and evaluate our solution’s effectiveness with real de-
veloper input. We hypothesized that the PERMITME plugin
would prove more efficient, effective, and usable than other
resources. An empirical analysis based on the use of the plu-
gin by 20 Android developers suggests that it was successful
in this endeavor.

Acknowledgments
We thank Swapnil Thorat and Yogeshwar Reddy Anugu for
their assistance in developing the PERMITME plugin. Mo-

hamed Shehab’s research was partially supported by grants
from the National Science Foundation (NSF-CNS-0831360,
NSF- CNS-1117411) and a Google Research Award. Em-
manuel Bello-Ogunu was supported in part under the De-
partment of Education (DoEd) Graduate Assistance in Areas
of National Need (GAANN) Computing Scholars Fellow-
ship as well as the NSF Scholarship for Service. Any opin-
ions, findings, conclusions, or recommendations expressed
here are those of the authors and do not necessarily reflect
the views of the DoEd or NSF.

References
[1] A. Acquisti and J. Grossklags. Privacy and rationality in indi-

vidual decision making. Security & Privacy, IEEE, 3(1):26–
33, 2005.

[2] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: ana-
lyzing the android permission specification. In Proceedings of
the 2012 ACM conference on Computer and communications
security, pages 217–228. ACM, 2012.

[3] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on pro-
duction software. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools
and engineering, pages 1–8. ACM, 2007.

[4] O. Consortium. ASM: a bytecode engineering library. http:
//asm.ow2.org/index.html, 12 Oct 2013.

[5] L. F. Cranor. Security and usability: Designing secure systems
that people can use. O’reilly, 2007.

[6] A. Developers. Android developers: Permissions.
http://developer.android.com/guide/topics/
security/permissions.html.

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. An-
droid permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security,
pages 627–638. ACM, 2011.

[8] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM
Sigplan Notices, 39(12):92–106, 2004.

[9] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools
and engineering, pages 9–14. ACM, 2007.

[10] N. Sadeh, L. F. Cranor, and P. G. Kelley. Privacy as part of the
app decision-making process, 2013.

[11] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[12] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen.
Asking for (and about) permissions used by android apps. In
Proceedings of the Tenth International Workshop on Mining
Software Repositories, pages 31–40. IEEE Press, 2013.

[13] T. Vidas, N. Christin, and L. Cranor. Curbing android permis-
sion creep. In Proceedings of the Web, volume 2, 2011.

[14] L. Vogel. Eclipse JDT - Abstract Syntax Tree (AST) and
the Java Model. http://www.vogella.com/tutorials/
EclipseJDT/article.html, 08 Aug 2012.

[15] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission
evolution in the android ecosystem. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages
31–40. ACM, 2012.

[16] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. Aside:
Ide support for web application security. In Proceedings of
the 27th Annual Computer Security Applications Conference,
pages 267–276. ACM, 2011.

[17] J. Zhu, H. R. Lipford, and B. Chu. Interactive support for
secure programming education. In Proceeding of the 44th
ACM technical symposium on Computer science education,
pages 687–692. ACM, 2013.

