
Anomaly Discovery and Resolution in
MySQL Access Control Policies

Mohamed Shehab, Saeed Al-Haj, Salil Bhagurkar, Ehab Al-Shaer
Department of Software and Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA

{mshehab,salhaj,sbhagurk,ealshaer}@uncc.edu

Abstract. Managing hierarchical and fine grained DBMS policies for
a large number of users is a challenging task and it increases the prob-
ability of introducing misconfigurations and anomalies. In this paper,
we present a formal approach to discover anomalies in database poli-
cies using Binary Decision Diagrams (BDDs) which allow finer grain
analysis and scalability. We present and formalize intra-table and inter-
table redundancy anomalies using the popular MySQL database server
as a case study. We also provide a mechanism for improving the perfor-
mance of policy evaluation by upgrading rules from one grant table to
another grant table. We implemented our proposed approach as a tool
called MySQLChecker. The experimental results show the efficiency of
MySQLChecker in finding and resolving policy anomalies.

Keywords: Policy, Access Control, Policy Analysis, Anomaly Detection

1 Introduction
Large DBMSs used in applications such as banks, universities and hospitals can
contain a large number of rules and permissions which have complex relations.
Managing such complex policies is a highly error-prone manual process. Several
surveys and studies have identified human errors and misconfigurations as one
of the top causes for DBMS security threats [3]. This is further magnified by
the adoption of fine grain access control that allows policies to be written at the
database, table and row levels. In addition, once policy misconfigurations are
introduced they are hard to detect.

There has been recent focus on policy anomaly detection, especially in firewall
policy verification [2,8]. The approaches proposed are not directly applicable to
database policies due to several reasons. First, firewall policies are based on
first-match rule semantics, in database policies other semantics such as most
specific are adopted. Second, the firewall polices are flat, on the other hand
database policies are hierarchical and are applied at different granularity levels.
Third, firewall policies are managed in a single access control list, while database
policies are managed by multiple access control lists. Therefore, new mechanisms
for policy analysis and anomaly detection are required database policies.

In this paper, we use MySQL as a case study due to its wide adoption. MySQL
provides a descriptive fine grain policy language which provides an expressive

policy language. First we start by introducing the details of group-based policies
used in MySQL. We define and formalize the set of possible access violations.
To aid the administrator in detecting and avoiding these violations we propose
a framework to detect and resolve the detected violations. To the best of our
knowledge, this is the first time such a policy violation detection and resolution
mechanism for DBMS policies has been proposed. We implemented our pro-
posed anomaly detection and resolution approaches as a tool (MySQLChecker).
The efficiency and scalability of MySQLChecker was demonstrated through our
experimental evaluations. The main contributions of the paper are:

– We formulate and model database access control policies using BDDs.
– We classified the set of possible database policy anomalies and proposed

algorithms to detect and resolve the detected anomalies using BDDs.
– With a proof of concept implementation of our proposed anomaly detection

and resolution, we have conducted experiments using synthetic policies.

The rest of the paper is organized as follows: In Section 2, we provide a brief
background of database policies, access control in the MySQL framework and
Binary Decision Diagrams. In Section 3, we define the formal representation of
database grant rules, tables, and policies using BDDs. In Section 4, we define
the set of possible anomalies in the MySQL context, and describe how the BDDs
are used to detect and resolve these anomalies. Our implementation and exper-
imental results are described in Section 5. Finally, we wrap up the paper with
related work and conclusions.

2 Preliminaries

In this section we present the preliminaries related to MySQL access control,
and Binary Decision Diagrams.

2.1 Database Policies

Most DBMS use access control lists to specify and maintain access control poli-
cies. For example, in MySQL access control lists (grant tables) are stored in
multiple tables within the DBMS itself. The policy adopted is based on a closed
world policy model, where access is allowed only if an explicit positive autho-
rization is specified, otherwise access is denied. The grant tables include user,
db, tables priv, columns priv and procs priv which are used to store privileges
at global, database, table, column and procedure levels respectively. Database
privileges include several permissions, for example SELECT, INSERT, etc.

An access rule R can be represented as a tuple that indicates the permissions
granted to a user over a given object. A rule is defined as R = {user, host,
db, table, column, privs}, where R[user], R[host], R[db], R[table], R[column],
R[privs] refers to the rule’s user, host, database, table column names and set
of privileges respectively. To refer to a group of hosts, IP address and domain
wildcards are allowed in R[host]. For example, 192.168.1.% refers to all hosts in
the 192.168.1 class C network, and %.abc.com refers to any host in the abc.com
domain. Database names can also include wild characters.

Access control in MySQL involves both Connection and Request Verification.
Connection verification verifies if a user connecting from a specific host is allowed

to login to the database. If access is granted, the request verification stage verifies
if the user has access to the objects requested. Request verification checks user
access from higher to lower granularity levels, for example database level, then
table level, and then column level.

2.2 Binary Decision Diagrams (BDDs)
Binary Decision Diagrams (BDDs) are a type of symbolic model checking. A
BDD is a directed acyclic graph [4, 5] used to represent boolean functions. The
graph has a root and set of terminal and non-terminal nodes. Each non-terminal
node represents a binary variable. Non-terminal nodes have two edges at most,
high and low. High edge represents the true assignment for that variable while
low edge represents the false assignment. Terminal nodes are two nodes repre-
senting the values true and false. BDDs were used efficiently in anomaly discover
in access control list in Firewalls [2] and XACML [7] policies. Utilizing BDD op-
erations such as and, or and negation can be used to efficiently implement set
operations on Boolean expressions such as intersection and union.

3 Formal Representation

In this section, we will present the formal representation for the MySQL policy
evaluation process using BDDs to encode the MySQL grant tables and rules.

3.1 Rules Modeling
A rule has two parts, condition and privilege vector. The matching request has
to match rule conditions in order to grant a set of privileges. A rule can be
represented formally as Ri : Ci ; PVi, where Ci are the conditions for the ith

rule that must be satisfied in order to grant privileges Vector PVi. The condition
Ci can be represented as a Boolean expression of the filtering fields, f1, f2, ..., fk
as Ci = f1 ∧ f2 ∧ . . .∧ fk. The fields can be host IP, user name, database name,
table name and column name.

Each grant table has different set of fields to represent the matching condition
for rules in that table. For example, users grant table uses host IP and user name
to match rules in the table. The db grant table uses host name, user name, and
database name for condition matching. Privileges vector is the decision vector for
each rule that specifies what are the privileges that will be granted when the rule
is triggered. Formally as PV = P1 ∧P2 ∧ . . .∧Pm, where m is the total number
of permissions in the system, Pi is a Boolean variable representing the ith per-
mission. When a permission is granted, its corresponding Boolean variable is set
to TRUE. For example, in Figure 1, the permission vector for bob@152.150.10.2
is |1, 0, 0| which means allowing SELECT and denying INSERT and UPDATE.

Rule User Host DB name Select Insert Update
r1 alice localhost % Y Y Y
r2 bob 152.150.10.2 Emp Y N N

Fig. 1. db grant table example

3.2 Grant Tables Modeling
To evaluate a request in MySQL policy, there has to be a rule in one of the grant
tables that allows this request. A grant table is modeled as a Boolean formula
using BDDs. Each grant table is a sequence of filtering rules, R1, R2, ..., Rn. The
rules are checked in the first match semantic when a request is matched.

In the first match semantic, policy evaluation starts from the first rule, then
the second rule and so on until a matching rule is found. For example, when the
third rule is matched, the first and the second rule are not matched. The formal
rule ordering in this is represented as R1 ∨ (¬R1 ∧R2)∨ (¬R1 ∧¬R2 ∧R3). The
previous formula shows the rules ordering only, it did not show the how rules
conditions and permissions are encoded in the grant table. Formally, each grant
table will be constructed as XBDD =

∧m
i=1X

i
BDD, where XBDD is the BDD

representation for any of the grant tables, and Xi
BDD is the BDD representation

for the ith permission in X grant table.
Each permission in the permission vector is represented by a BDD. The kth

permission BDD is Xk
BDD =

∨n
i=1 ¬C1 ∧¬C2 . . .¬Ci−1 ∧Ci ∧Pk, where n is the

total number of the rules in the X grant table and k is the kth permission in
the permission vector PV. Each of the grant tables will be encoded as a BDD.
Where UBDD, DBDD, TBDD and CBDD represent the users, db, tables priv, and
columns priv grant tables respectively.

3.3 Policy Modeling

In order to determine if a request is to be granted or not, the users grant table
is checked first. If a matching rule is found in the table, the associated priv-
ileges are granted. Otherwise, db grant table is checked for a matching rule.
MySQL policy checks grant tables in the following order: users, db, tables priv
and columns priv. Formally, the BDD first match semantic for MySQL policy
(GMySQL) is represented as:

GMySQL = UBDD

∨
(¬UBDD ∧DBDD)

∨
(¬UBDD ∧ ¬DBDD ∧ TBDD)∨

(¬UBDD ∧ ¬DBDD ∧ ¬TBDD ∧ CBDD)

Given a request Q, the decision whether to grant this request or not is eval-
uated by intersecting GMySQL and Q. If the resultant Boolean expression is
FALSE, then the request is denied. Otherwise, it is granted. Formally this oper-
ation can be represented as Q∧GMySQL ⇔ action, action ∈ {TRUE | FALSE}.

4 MySQL Policy Anomalies

The hierarchal relation between grant tables and the first match semantic in
evaluating requests can introduce different types of anomalies. There two types
of anomalies in MySQL policies namely intra-table and inter-table redundancy.

4.1 Intra-Table Redundancy

Intra-table redundancy is the redundancy within the same grant table. Subset
and superset relationships are the primary causes for rule redundancy. Two
rules are intra-table redundant if they grant the same privileges for the same
conditions. Rule redundancy can occur in all grant tables. The following intra-
table redundancy definition applies for any grant table.

Definition 1. Given a grant table XBDD, a rule Ri is intra-table redundant to
rule Rj for i < j if:

(Ci ⊆ Cj)
∧

(PVi = PVj)
∧

(@Rk(i < k < j ∧ Ci ⊆ Ck ∧ PVi 6= PVk)) .

Definition 1 covers intra-table redundancy case in which the preceding rule
Ri is a subset from the superset rule Rj . Unlike firewall policies, a superset rule
cannot appear before a subset rule because of the pre-sorting process. A rule is
intra-table redundant if there is a rule with the same privileges vector follows
the redundant rule. Definition 1 excludes the case of exceptions. Exceptions are
not considered as redundant rules because they intended to perform different
action on a subset from the later rule. We demonstrate this condition through
the example in Figure 2(a). Note that rules R2 and R3 are not intra-redundant
because they have different permission vectors. In the case of R2 and R5, even
both rules have the same privilege vector and subset relationship between condi-
tions, they are not considered redundant because there is another rule, R3 that
has different permission vector. When deleting rule R2, bob@152.150.10.1 will
not be able insert because the insert privilege has been revoked in rule R3. Rules
R1 and R4 are redundant. Deleting R1 will not affect the policy semantics.

Rule User Host Select Insert Update
R1 alice 152.150.40.55 Y N N
R2 bob 152.150.10.1 Y Y N
R3 bob 152.150.10.% Y N N
R4 alice 152.150.40.% Y N N
R5 bob 152.150.%.% Y Y N

(a) users grant table example

Rule User Host DB name Table Select Insert Update
R1 bob 152.150.10.5 Emp manager Y Y N
R2 bob 152.150.10.% Emp human resources Y N N
R3 bob 152.150.%.% Acc human resources Y N Y
R4 alice 169.12.%.% Emp manager Y Y Y

(b) tables priv grant table example

Rule User Host DB name Table Column Select Insert Update
R1 bob 152.150.10.% Emp manager name Y Y N
R2 bob 152.150.10.% Emp human resources id Y Y Y
R3 bob 152.150.%.% Acc human resources salary Y N N
R4 alice 169.12.25.% Emp manager id Y Y Y

(c) columns priv grant table example

Fig. 2. Intra and Inter-Table Redundancy Example

4.2 Inter-Table Redundancy
Inter-table redundancy appears between two rules in different grant tables. Con-
sidering all grant tables, we have six inter-table redundancy cases between all
grant tables. Inter-table redundancy is partial or complete. Complete inter-table
redundancy occurs when two rules in different grant tables have the same priv-
ileges vector for some common conditions. While the partial inter-table redun-
dancy when some privileges are similar for some common conditions.

Definition 2. Given two grant tables X and Y , X<Y , having the BDD repre-
sentation XBDD and YBDD respectively, a rule Ri ∈ YBDD is completely inter-
table redundant by Rj ∈ XBDD if: (XBDD ∩ YBDD 6= φ) ∧ (Ci ⊆ Cj).

To find complete inter-table redundancy, grant tables BDDs are compared to-
gether. Complete inter-table redundancy requires two conditions: 1) there is an
overlap between grant table BDDs and 2) the superset rule appears in the upper
level grant table.

Definition 3. Given two grant tables X and Y , X<Y , having the BDD repre-
sentation XBDD and YBDD respectively, a rule Ri ∈ YBDD is partially inter-table
redundant by Rj ∈ XBDD if: ∃m∃k(Xm

BDD∩¬Y m
BDD 6= φ)∧(Xk

BDD∩Y k
BDD 6= φ).

Where Xm
BDD is the BDD representation for the mth permission in X grant table.

In partial inter-table redundancy, the privileges vectors are not the same. There
are some permissions allowed in the upper level table and denied in the lower
level table. Partial inter-table redundancy does not hold if a permission is denied
in the upper level table and allowed in the lower level table. Partial inter-table
redundancy requires at least one permission to be allowed in both rules. This is
necessary to eliminate the case in which there is no rule exists in the lower level
grant table. Figures 2(b)-2(c) provide inter-table redundancy examples. Rules
R1 in tables priv and R1 in columns priv are not redundant because the upper
table rule is not a superset rule. Rules R2 in tables priv and R2 in columns priv
are not complete inter-table redundant because privileges vectors are not the
same, also they are not partial inter-table redundant because the upper table
rule denies the insert privilege while the lower table rule allows it. Rules R3 in
tables priv and R3 in columns priv are partially inter-table redundant. Rules R4

in tables priv and R4 in columns priv are complete inter-table redundant.

4.3 Violations and Safety
A policy operation is safe if it does not cause the new policy to allow (deny)
requests that were previously denied (allowed) by the original policy. Mainly
safety is focused on maintaining the allow and deny space of the original policy.

Definition 4. Policy PA is allow (deny) safe w.r.t policy PB iff every request
allowed (denied) by PA is also allowed (denied) by PB. An operation OP that
transforms PA to PB is safe iff PA and PB are both deny and allow safe.

In what follows we will investigate the safety of the operations involving the
removal of rules identified as redundant.

Proof. Let the original policy PA includes a rule Rs is identified as a redundant
violation. Let the policy PB be the policy generated after removing rule Rs
from PA. Let PA be a policy with three rules: R1, R2 and R3. Assume rule
R1 is an intra-table redundant with R3. Using the BDD modeling described
earlier, the formal representation for PA is R1∨(¬R1 ∧R2)∨(¬R1 ∧ ¬R2 ∧R3).
Redundancy check requires R1 ⊂ R3. When R1 ⊂ R3, then R1 ∩ R3 ⇒ R1 and
R1 ∪ R3 ⇒ R3. To simplify the formula, we can apply demorgan’s law. The
final result will be similar to PB that has only two rules R2 and R3. The formal
representation for PB is R2∨(¬R2 ∧R3). After simplifying PA and PB , the same
Boolean expression is reached. Therefore, removing an intra-table redundant rule
will not change the matching semantic for MySQL final policy. For the sake of
simplicity we used 3 rules, the proof can be easily extend to any number of rules.

In case of inter-table redundancy anomaly, the redundant rule is located in
the lower level grant table. Let the original policy PA includes a rule Rs is
identified as an inter-table redundant violation. Let the policy PB be the policy
generated after removing rule Rs from PA. Let the subset rule, Rs, be in YBDD
grant table and the superset rule be in XBDD. Before removing the redundant
rule, the intersection of grant table BDDs is: XBDD∩YBDD 6= φ. After removing
the subset rule Rs from YBDD the intersection of the two grant table BDDs is
φ and Rs ∩XBDD = Rs, because of the presence of a superset rule that covers
Rs in XBDD. Therefore, any request will be matched in the upper grant table
after removing the inter-table redundant rule from the lower grant table. ut
4.4 Algorithms
This section defines algorithms that are used to extract the list of intra/inter
table redundant rule conditions in MySQL based on the BDD representation of

the policy. Algorithm 1 detects intra-table redundant rule by comparing each rule
condition with its possible supersets succeeding it. Algorithm 2 detects complete
inter-table redundant rules in the db grant table based on UBDD and DBDD.

Algorithm 1: IntraRedRules
Input: Lu (Sorted list of user rule BDDs)
Output: Lr

1 for i = 0 to |Lu| - 2 do
2 for j = (i + 1) to |Lu| - 2 do
3 P = Lu[i];
4 N = Lu[j];
5 I = N ∩ P ;
6 if P == I and PVi == PVj then

7 Lr ∪ {(i, j)};
8 end
9 if P == I and PVi ! = PVj then

10 break;
11 end
12 end
13 end
14 return Lr

Algorithm 2: InterRedRules
Input: UBDD , DBDD
Output: Ls

1 I = UBDD ∩DBDD ;
2 Ls = φ;
3 while (I) has satisfying assignments do
4 b =One satisfying assignment of (I);
5 Ls = Ls∪ info(b);
6 I = I ∩ (¬b);
7 end
8 return Ls;

Fig. 3. Algorithms.

5 Implementation and Evaluation
We developed and tested our framework against synthetic policies to show the
scalability of the framework. It is difficult to get a large number of real-life
MySQL policies as these policies are often regarded as confidential. We developed
a policy generator engine that generates synthetic policies, with a specific number
of rules at each level and probabilities of intra-table (Pintra) and inter-table
(Pinter) redundancy. The experiments were performed on Mac OS X 10.5.5 with
4GB RAM and a 2.4GHz Dual Core, using the BuDDy library v2.4 and MySQL
client library v5.1.

0 200 400 600 800 1000 1200

0
5

10
15

20

Rule Count

P
ro

ce
ss

in
g

T
im

e
(s

ec
)

Policy Set (0.1,0.9)
Policy Set (0.5,0.5)
Policy Set (0.9,0.1)

(a) BDD Generation

0 200 400 600 800 1000 1200

0
10

20
30

40

Rule Count

P
ro

ce
ss

in
g

T
im

e
(m

se
c)

Policy Set (0.1,0.9)
Policy Set (0.5,0.5)
Policy Set (0.9,0.1)

(b) Intra-Tbl

0 200 400 600 800 1000 1200

0
50

10
0

15
0

20
0

25
0

Rule Count

P
ro

ce
ss

in
g

T
im

e
(m

se
c)

Policy Set (0.1,0.9)
Policy Set (0.5,0.5)
Policy Set (0.9,0.1)

(c) Inter-Tbl

0 500 1000 1500 2000 2500
Rule Count

B
D

D
 S

iz
e

(M
B

)
0

30
0

60
0

90
0

12
00

15
00

(d) BDD Memory

Fig. 4. User Study Results and Algorithms Performance

The synthetic policies were analyzed by our framework and the BDD gen-
eration, intra-table and inter-table redundancy average processing times were
recorded. Figure 4(a), shows the initial processing time required to build the
BDD for different policy sets where (Pinter, Pintra) are the inter-table and intra-
table redundancy probabilities respectively. The intra-table and inter-table re-
dundancy processing times are reported in Figures 4(b) and 4(c) respectively.
Note, that the BDD generation, intra-table and inter-table processing times are
linear with respect to the number of policy rules. The discovery and resolution of
the inter-table redundancy depends on the percentage of inter-table introduced
in the synthetic policy, for a policy containing 1200 policy rules it takes around
90ms and 250ms for Pinter values of 0.1 and 0.9 respectively, refer to Figure 4(c).
In addition, we recorded the memory requirements for storing the BDD gener-
ated, the memory required is polynomial (degree 2) w.r.t the number of policy
rules, the regression estimate (R2 = 0.983) is plotted in Figure 4(d).

6 Related Work

BDDs were utilized to resolve anomalies in access control lists [2, 6, 7]. The
work presented by Al-Shaer et al. in [2, 6] used BDDs to discover and resolve
anomalies in network devices such as firewalls, IPSecs, etc. The work introduced
enter-policy and intra-policy anomalies. Redundancy, shadowing, correlation and
exception were resolved in this work. Web access control list anomalies were
studies by Hu et al. in [7], where XACML policies were modeled using BDDs,
which was used to discover and resolve conflicts and redundancy in both XACML
policy and policy set levels.

Role based access control, which has made significant simplifications in the
management of security policies. Roles represent functional roles in an enterprise
and individual users acquire authorizations through their assigned roles. Re-
search related to RBAC policy verification [1,9] has focused on verifying RBAC
implementation, Separation of Duty and role hierarchy constraints.

7 Conclusion

In this paper, we presented a formal approach to model and define anomalies
in MySQL policies. We utilized Binary Decision Diagrams (BDDs) to encode
MySQL policy and grant tables. We presented and formalized intra-table and
inter-table redundancy anomalies. In addition, we provided a mechanism for
improving the performance of policy evaluation by upgrading rules from one
grant table to another grant table. We implemented our proposed approach as
a tool called MySQLChecker. The experimental evaluation conducted on the
MySQLChecker shows the efficiency and scalability of finding and resolving the
presented policy anomalies.

References

1. G.-J. Ahn and H. Hu. Towards realizing a formal rbac model in real systems. In
Proceedings of the 12th ACM symposium on Access control models and technologies,
SACMAT ’07, pages 215–224, New York, NY, USA, 2007. ACM.

2. E. S. Al-Shaer and H. H. Hamed. Discovery of policy anomalies in distributed
firewalls. In INFOCOM’04, volume 4, March 2004.

3. Application Security Inc. Database security tips for 2012. http: // www. appsecinc.
com/ santa-breach/ Database_ Security_ Tips_ 2012. pdf , 2011.

4. K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a bdd
package. In Proceedings of the 27th ACM/IEEE Design Automation Conference,
DAC ’90, pages 40–45, New York, NY, USA, 1990. ACM.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35:677–691, August 1986.

6. H. H. Hamed, E. S. Al-Shaer, and W. Marrero. Modeling and verification of ipsec
and vpn security policies. In ICNP 2005. 13th IEEE International Conference on
Network Protocols, pages 259–278, 2005.

7. H. Hu, G.-J. Ahn, and K. Kulkarni. Anomaly discovery and resolution in web access
control policies. In Proceedings of the 16th ACM symposium on Access control models
and technologies, SACMAT ’11, pages 165–174, New York, NY, USA, 2011. ACM.

8. E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng., 25:852–869, November 1999.

9. B. Shafiq, A. Masood, J. Joshi, and A. Ghafoor. A role-based access control policy
verification framework for real-time systems. In WORDS’05, Feb. 2005.

