
Android Keylogging Threat

Fadi Mohsen, Mohammed Shehab
Department of Software and Information Systems

University of North Carolina at Charlotte

Charlotte, NC, USA

{fmohsen, mshehab}@uncc.edu

Abstract—The openness of Android platform has attracted
users, developers and attackers. Android offers bunch of capabil-
ities and flexibilities, for instance, developers can write their own
keyboard service-similar to Android soft keyboards-using the
KeyboardView class. This class is available since api level 3.0 and
can be part of the layout of an activity. Users prefer to download
and install third-party keyboards that offer better experience and
capabilities. However, there are security risks related to users
installing and using these custom keyboards. Attackers can build
or take advantage of existing third-party keyboards to create
keyloggers to spy on smartphones users. Third-party keyboard
once activated would substitute the Android standard keyboard,
so all keys events pass this app. As results, many attacks can
be launched identified by the permissions granted to these apps.
The objective of this paper is to present these attacks, analyze
their causes, and provide possible solutions.

Index Terms—mobile security, mobile apps, keyboard logging

I. INTRODUCTION

Mobile devices are becoming more popular than televi-

sions globally. They are running by different mobile operating

systems (OS) such as Google’s Android, Apple’s iOS, Nokia’s

Symbian, Blackberry Ltd’s BlackBerry OS, Samsung’s Bada,

Microsoft’s Windows Phone, etc. Mobile operating systems

can also be extended by installing different kind of mobile

applications (apps). Developing mobile apps is becoming

more accessible to developers, and plenty of development

resources and support are available. As a result, thousands

of applications are now available in the market, some of them

are free, others are not. For example, in the first quarter of

2013, Apple customers have downloaded more than 40 billion

apps, the developers have created more than 775,000 apps,

and generating billions in revenue. Android US market share

dips slightly, remains on top as of April 2013 [23]. In a

race to one million apps between Google’s Android operating

system and Apple’s iOS, Google declared victory on July 2013

announcing that the Google Play store had more than one

million apps in its app store. Android’s noticeable popularity

among consumers and developers alike is tightly related to its

openness and powerful development framework.

The Android’s platform openness has triggered a great

rise in privacy concerns and malware. For instance, the major-

ity of Android applications require permissions to access the

phone resources: phone book, camera, sensors, etc. Therefore,

many concerns have risen regarding data privacy [19], [12],

[17], [11], [18]. Many solutions were implemented as well

[13], [10], [25], [27] to detect and prevent from information

leakage. In the other hand, Android Play store has attracted

hackers to spread their malicious apps (malware). The most

common Android malwares are spyware and (SMS) trojans

that: collect private information, send SMSs to premium num-

bers, record voice calls, etc. Malware is a general term used

to refer to a variety of forms of hostile or intrusive software,

including: computer viruses, worms, trojan horses, rootkits,

keyloggers, and other malicious software. the work of [29]

emphasized the importance of understanding these malwares

to build effective defense mechanism.
In this paper, we study the possibility of keylogging

attacks on Android. Which is a security threat pertaining

to Android openness on specific feature, the keyboard. The

Android system shows an on-screen keyboard–known as a soft

input method– when any text field within the system or appli-

cation gets focus. Before the soft keyboard, Android supported

the hardware keyboard. The keyboards since then have evolved

and users have learned to customize their keyboards and install

new ones. The need for customized keyboard varies, multi-

language support, different themes, or people with disabili-

ties or health problems [26]. Android provides accessibility

features and services for helping these users navigate their

devices more easily. Android provides an extensible input

method framework that allows applications to provide users

alternative input methods, such as on-screen keyboards or

even speech input. Android developers use KeyboardView to

build their keyboards to work within their applications’ context

(embedded) or as a stand-alone application. In this paper, we

focus only on stand alone third-party keyboards. This facility

poses some security threats on phone users’ data. Given that

most data passes through keyboards, users’ privacy can be

greatly impacted with malicious keyboards.
In this paper, we show the potential risks related to

downloading and installing third-party keyboards. The risks

are centralized around spying on whatever users enter via like

these keyboards. Moreover, the attacks are dependent on the

permissions requested by these applications upon installation.

Our contributions are as follows:

1) Conducted an empirical study on a set of keyboards

collected from the market

2) Provide different scenarios for possible attacks and im-

plementing them

3) From the empirical study and previous work we identify

dangerous permissions related to the attack scenarios

4) Develop an Android application, KBsCheckers, detects

all running keyboard services, identify potential risks and

alert the user to take some actions.

II. BACKGROUND

In this section, we give background information on Android

keyboards, Android permission system, and the key-logging

threat.

A. The Evolution of Android Keyboards

The Android operating system started on October 22nd,

2008. It was designed primarily for touchscreen mobile de-

vices such as smarphones and tablet computers. The initial

release was missing many features that we consider nowadays

necessities, for instance, the on-screen keyboards. The evolu-

tion of Android keyboards has gone through many stages:

1) Android 1.5 Known by its codename, Cupcake [3], sup-

ported both virtual and physical keyboards. The virtual

keyboard supports both landscape and portrait orientation

modes and works with the built in applications (e.g. SMS,

web browser, etc.) and third-party applications. It also

provides auto-correct capability, a suggestion algorithm

and dictionary of suggestions, and support for custom

user dictionaries. Moreover, it supports tactile feedback

using screen vibration. Finally, it integrated the hooks

necessary for third-party developers to develop their own

customized keyboards.

2) Android 2.0/2.1 Known by its codename, Eclair [4], in-

troduced some improvements over the soft keyboard. For

example, Eclair used multitouch data on the keyboard to

detect secondary presses while typing rapidly, it resulted

in improving the accuracy especially for fast typists.

3) Android 2.3 Known by its codename, Gingerbread [5],

improved the keyboard design and functionality. The

design and coloration of the keys changed significantly.

The multitouch on the other hand has also improved with

“chording”, allowing users to press multi-key combina-

tions to quickly access the secondary symbol keyboard.

4) Android 4.0 Known by its codename, Ice Cream Sand-

wich [6], the changes were made to improve the cor-

rection intelligence with an attractive implementation of

inline spellcheck and replacement.

From the above items, we conclude that Android supported

the third-party developers in developing their own keyboards

since version 1.5. Moreover, the correction intelligence was

the main functionality that received the most attention since

then. In other words, Android developers had the motive and

the flexibility to develop their own customized keyboards.

B. Android Permissions

Android permission system mandates applications to

possess permissions in order to make API system calls. The

APIs provide access to system and user resources such that

contacts, messages and camera. The permissions are granted

by the user upon installation. Application developers declare

the required permissions in the AndroidManifest.xml file using

the uses-permission tag. For example, an application needs to

request the READ CONTACTS permission to read the user’s

address book. Once installed, an application’s permission can’t

be changed.

There are normal permissions and dangerous permis-

sions. The former type has lower-risk and gives requesting

applications access to isolated application-level features, with

minimal risk to other applications, the system, or the user.

The system automatically grants this type of permission to a

requesting application upon installation without user consent.

The dangerous permission though has higher-risk that gives

requesting applications access to private user data or control

over the device which could impact the user negatively.

Because of that, the system displays these permissions to the

user upon installation. The user can then approve or deny them.

Many security threats were connected to the unsafe

usage of Android permissions. For instance, applications can

be granted more permissions than they actually need, what

researchers called a “overprivilege” [16] or “permission gap”

[10]. Malware can leverage the unused permissions for mali-

cious purposes, for instance using code injection. The threat

level is not only connected to the meaning of a single permis-

sion, instead the permissions combinations play an important

role in understanding the potential implications. Android key-

board applications can also request to have permissions upon

installation, some of these permissions may impose privacy

threat.

C. Key-Logging Threat

Keyloggers or also known for keystroke recorders are

softwares whose main purpose is to monitor user’s keyboard

actions. keyloggers in the computer community can be mainly

classified into two categories: hardware and software. Hard-

ware keyloggers take the form of small electronic devices used

for capturing the data in between a keyboard and I/O port

[15]. They have their own built-in memory, the place where

the captured data is stored. It can be either plugged into the

end of the keyboard cable or installed inside the computer

case, or inside the keyboard itself. This type of keylogger

is hard to be detected by the anti-viral software or scanners

because: it doesn’t use any computer resource, it doesn’t use

computer hard disk for storing keystroke logs, and it can be

placed in different locations. Though, the main disadvantage

of this type is that they require physical installation. Software

keyloggers on the other hand collect keystroke data within the

target machine, store them temporary on local storage before

sending them to the attacker who installed the keylogger. It

could also be the case where keystroke data sent directly

without temporal local storage. The Monitoring methods for

software keyloggers are operating-system specific. Keyloggers

pose security and privacy risks on users. In Android, software

keyloggers are the only type that may exist. In that case, the

keylogger must have certain permissions to record, store, and

send the keystroke data.

III. ANDROID INPUT METHODS

There are two parts in developing a keyboard in Android:

the interface and the implementation. We first talk about

Android input method framework then we explain how to

create new input method.

A. Input Method Framework Architecture

Android input method framework architecture (IMF) is

composed mainly of three components: input method man-

ager [8], input method (IME)[7], and client applications. The

InputMethodManager is the key component that mediates

interaction between the other parts. It can be expressed as

the client-side API that exists in each application and talks

with a global system service which manages the interaction

across all processes. Android InputMethod interface represents

any method that can generate key events and texts, such as

text messages, emails, different languages characters, while

handling various input events, and send the text back to the

application that requests text input. An Android application

that contains an instance of EditText or TextView need not to

worry about implementing the InputMethod interface, instead

it relies on the standard interaction provided by these two

components.

Implementing an input method in Android is done through

deriving a class from InputMethodService or any of its sub-

classes. It involves providing two types of interfaces: top-

level interface and session interface. The former provides

full access to the input method and it is only accessible by

the system. To ensure that only the system can bind to it,

an input method must require that clients should hold the

BIND INPUT METHOD, otherwise the system won’t bind

and will consider that method as compromised. The session

interface is what client applications use to communicate with

the input method.

B. Creating an Input Method

In this section, we show how to create a keyboard in

Android, which is an example of input method (IME). Through

out the rest of the paper we use the terms keyboard and IME

interchangeably.

1) Declaring IME Components in the Manifest: In the

Android system, an IME is an application that contains a

special IME service. The manifest should contain service

declaration, permission request, metadata, intent filter, and an

optional “settings” activity. The intent filter must match the

action “action.view.InputMethod”, the metadata defines the

characteristics of the IME service, and the settings activity

is to allow the user pass new options.

2) Designing the Input Method UI: Android keyboard

(IME) main components are: the layout component, manifest

entry, xml file, and program component. First of all, the

KeyboardView [2] which is a view that renders a virtual Key-

board. It handles rendering of keys and detecting key presses

and touch movements. Like any other Views, KeyaboardView
should be included in the layout file of the application. Second,

the Keyboard class [1] loads an XML description of a keyboard

Fig. 1. Warning message upon activating the new keyboard

and stores the attributes of the keys. A keyboard consists of

rows of keys. For instance, we could define myKeyboardView

as an instance of a custom implementation of KeyboardView
that renders myKeyboard, which is an instance of Keyboard
class . There are some UI design considerations for IMEs,

like handling multiple screen sizes and handling different input

types (e.g. Text, Numbers, URL, etc.). Developers can handle

these issues by modifying the XML files and program section.

3) Sending Text to the Application: The purpose of the

IME (e.g. keyboard) is to provide the interface, handle user

events and then send the text to applications. As the user

inputs text with the active IME, text can be sent to the

application by sending individual key events or by editing

the text around the cursor in the application’s text field. In

both cases, an instance of InputConnection is required to

deliver the text. This instance can be retrieved by calling

InputMethodService.getCurrentInputConnection().

IV. THREAT MODEL FOR MOBILE PLATFORMS

In this section we present an overview on the security

challenges mobile platforms are facing. We present attacker’s

motives and goals, attack vectors and mobile malwares. The

overview will set up the basis before discussing the risks of

Android KeyboardView or Android third-party keyboards, thus,

displaying these risks on regard to the overall risks.

A. Motivation

In smarphones arena, attacker’s motives can be classified

into two main motives. The first one is to harm the user by

disrupting the normal operation of a mobile device. The second

is done for financial gain. In addition, there is the spying

motive that may overlap with any of the two main motives

or may not.

1) Financial Gain: For the financial motive, there are many

ways to achieve that. Premium rate number billing is one

example. In this scenario, attackers set up and register a

premium-rate number that when calling or sending an SMS

to it, the caller is billed a premium rate above the normal cost

of an SMS or phone call. The revenue is then shared by the

attacker, carrier, and the SMS aggregator. Android applications

can request permissions to send SMS messages at installa-

tion time. The SMS messages can be sent without the user

confirmation. Moreover, Android developers usually benefit

financially, either by selling their apps or embedding one of

the many ad libraries available on smartphone platforms. Some

attackers repackage a legitimate ad-supported application then

make it available on the market. So, whenever a user installs,

use and clicks on the ads the revenue goes to the attacker. More

examples like: pay-per-click, pay-per-install, mTAN stealing,

etc.

2) Cause Harm: Some attacks are designated to cause harm

to the user and the device. Malicious actions that can drain the

battery [28], generate huge network traffic, or destroy the data

are examples of this type of attack. While these type of attacks

have low motive, yet they can cause financial loss.

3) Spying: Attackers write Android applications that allow

someone to track and monitor a smartphone user. These

applications may collect and export all SMS messages, emails,

call logs, GPS locations, or listen to voice messages. Typically,

some of these applications are developed by vendors and made

available to purchase by an attacker who then gain physical

access to the victim’s phone. These applications generate

revenue for their vendors, from selling them on the Android

Market. The motivation for the attacker is then not to achieve

revenue but other matters. For example, it can be used by

a family (or a business) to monitor people communications

without their knowledge. It can also be used by malicious

individuals to steal passwords or credit card information.

B. Mobile Malware

Malware, short for malicioius software, is software used or

developed by attackers to interrupt computer operation, collect

sensitive information, or gain access to private computer

systems. It can take the form of scripts, code, and other

software. Malware is a general term used to refer to a variety

of forms of hostile or intrusive software, including: computer

viruses, worms, trojan horses, rootkits, spyware, keyloggers,

and other malicious software. Recent studies indicated that

mobile malware is on the rise as more businesses and con-

sumers migrate to phones and tablets. Mobile attacks using

malware are growing in both numbers and complexity. The

work of [29] has identified 1,200 malware samples that cover

the majority of existing Android malware families ranging

from their debut in August 2010 to October 2011. The study

emphasized the importance of understanding these malware

as the best mean to defend against them. In this paper, we

provide different scenarios for using KeyboardView to keylog

user inputs.

C. Attack Vector

They are the collective means and gates through which

attackers get into the target mobile platforms to achieve

specific goals. The goals can be to access system resources

(e.g. camera, GPS, microphone, etc.) or stored data (e.g.

pictures, emails, contacts, etc.). Mobile platforms contains

many attack vectors, which include: Internet, Bluetooth, USB,

Mobile Network Services (e.g. SMS and MMS). Attacks

would also take advantage of internal vulnerabilities, such that

bugs within software, running on the device and processing

external data (e.g. WebView and Browser). If the attacker

fails to trick the user into installing her malicious software,

a physical access to victim’s device would be necessary to get

that done.

1) Android Keylogging Attack Vector and Adversary Model:
A keylogger can be part of a spyware or a legitimate key-

board application. Keyloggers are sometimes part of spyware

packages downloaded onto smartphones without the owners’

knowledge. Most keyloggers allow keyboard strokes to be

captured and stored on the local storage, but some are pro-

grammed to automatically transmit data over the network

to a remote computer or Web server. An attacker buys a

spyware, get physical access to the victim’s device and then

installs it. An advanced attacker may choose to modify an

existing keyboard application available through an official

market, to act maliciously. This is possible due to the fact that

reverse engineering Android applications is trivial and requires

low effort with the assumption that no code obfuscation is

used. The modified application can be then made available

on (alternative Android Markets) non-market places. In other

scenario, an attacker may also choose to develop keyboard

application on its own, insert the keylogging code and then

upload the final application on the official markets. Morevoer,

developers may leverage some existing code, for instance,

Google made some sample code available online [21].

D. Android Keylogging Attack

In Android, keylogging [22] attacks is highly possible

because since Android 1.5, Android has integrated the hooks

necessary for third-party developers to develop their own

customized keyboards. A third-party keyboard in this case will

reside between the end user and any system or third-party

application that requires user input. A similar attacks is man

in the middle attack [24]. Thus, the target is mainly the text

inserted by the end users using these keyboards. The text can

be limited in scope in case of customized keyboard running in

an application context and coupled with few view components.

It can be tremendous though in case of the keyboards used in

substitute of the standard keyboard. In keylogging attacks, the

data can be sent directly to the attacker or stored temporarily

on a local storage or remote server. Luckily, in Android we

can determine the capability of any third-party keyboard or any

other application by the permissions it holds. For instance, if

a keyboard has the permission android.INTERNET, then that

permission will allow it to open network sockets.

In this paper we assume that Keylogging attacks on Android

can be done in a two-step or three-step scenario. The three

steps are:

1) Collecting: the assumption here is that all data entered

by keyboard app is susceptible for being collected and

Fig. 2. Android keyboard attack scenarios

logged. The keyboard can store the input text before

sending it to the requested app.

2) Storing: Android provides several options for the devel-

opers to save data parmentally. Developers choose the

one that fits thier needs, such as whether the data should

be private or shared with other applications.

3) Sending: The last step is to send the stolen data to remote

places (e.g. servers).

So, in a two-step scenario the attacker writes a code that

collects data then sends it to a specific location. In a three-

step scenario the attacker writes a code that collects data,

stores it temporarily on a local storage, then sends it to a

specific location. The user input data could be known to the

attacker, e.g. in case of local keyboard coupled with specific

text fields. Or, could be any text, e.g. in case of a keyboard app.

The processing though is done in case of the data collected

by the keyboard app, e.g. pattern matching. We identified the

permissions requirements of the two scenario. Kirin [14] used

similar approach in that it blocks the installation of apps that

request particular permissions combinations. In this paper, the

attack model is defined by the requested permissions.

E. Permissions Requirement

The road map to any attack in Android requires that an

application possessing some permissions. Starting from the

collection step, an application that displays keyboard interface

to the end user needs to define a service with the permission,

android.permission.BIND INPUT METHOD. For the storage

methods on Android, one can choose from the following list:

1) Shared Preferences: Store private primitive data in key-

value pairs.

2) Internal Storage: Store private data on the device memory.

3) External Storage: Store public data on the shared external

storage.

4) SQLite Databases: Store structured data in a private

database.

5) Network Connection: Store data on the web with your

own network server.

The above storage methods aggregately re-

quires the following set of Android permissions:

Fig. 3. Android keyboard attack graph

WRITE EXTERNAL STORAGE, INTERNET, AC-
CESS NETWORK STATE. The last two are also required for

sending data over the Internet.

In Figure 3, we distinguish between four possible at-

tack types with third-party keyboards: A, A+, B, and

B+. In case of A, a keyboard needs only the IN-

TERNET permission, A+ requires INTERNET and AC-

CESS NETWORK STATE permissions, B is A plus the

WRITE EXTERNAL STORAGE permission, and B+ is A+

plus the the WRITE EXTERNAL STORAGE permissions.

V. EXAMPLE OF A MALICIOUS KEYBOARD

Users install like these keyboards and let them take over

the system for the purpose of enjoying their capabilities and

overcoming the system keyboard limitations. They need a

keyboard that supports different languages, smarter in terms

of auto completion and correction, and offers more symbols.

All the data that is entered by the user in any application:

system app or third party app, will pass through the new

keyboard. In order to demonstrate how user typing could

be collected and sent to a remote destination, we present

here a simple malicious keyboard application for the Android

platform. Android platform adopts permission based security

model where user is one of the key security factors. Since

the user decide to install certain application and grant it the

requested permissions. So, tricking the user to install malicious

application is part of the attack model.

The scenario consists of four entities: the attacker, user,

application, and Android market. First, the attacker deploys

the malicious application into official Android market or

alternative market (1). The user using a search engine will

look for a keyboard application, finds the malicious on the

official market or the alternative (2). She then clicks on the

link and installs it on the device after accepting the requested

permissions (3). As the user types in using the malicious

keyboard, the keystrokes is being sent to a remote server (4).

VI. DATA ANALYSIS

We present in this paper the first empirical study on Android

third-party keyboards phenomenon, giving many details about

these keyboards. In this paper our data analysis is central-

ized around two major points. The first is concerning the

Fig. 4. The download frequency for the collected third-party keyboards

Fig. 5. The frequency for the number of permissions requested by collected
apps

number and type of permissions requested by the collected

keyboard applications set, which tells us the vulnerability of

the keyboard application. The second is the number of users

downloading these applications and their ratings, which tells

us the scale of an attack. We conducted an empirical study

on a set of 125 keyboards apps collected from Google Play

Market. We used the apktool to get their AnadroidManifest
files. We then parse these files for the permission requests.

Moreover, we use the data; app installation count and ratings,

available on the Android Market information page.

A. Permissions Analysis

Among the studied 125 keyboard applications, only 15%

requested zero permissions, the remaining 85% requested

one or more permissions upon installation, see Figure 8. The

number of permissions requested ranges from 1 to 16 with few

exceptions. Figure 7 displays the frequency for each number

of permission, 61% of these applications requested more than

two and less than eight permissions. The highest frequency is

seventeen for one permission. As an extreme case, we found

a keyboard application that requested forty nine permissions.

The application has a rating of 4.6 out of 5 and number of

downloads were between five hundred thousands and one

million. For the type of permissions requested, in Figure 6,

we show the most requested permissions overall keyboard

apps. The permission android.permission.VIBRATE was the

Fig. 7. The rating frequency for the collected third-party keyboards

top most requested permission, 77.60% of the apps requested

this permission.

B. Popularity

Number of downloads and users’ ratings are two measures

for the popularity of any Android application. Thus, as these

two measures go higher, attackers get attracted to use like

these applications to host their malicious code. Figure 7 shows

the ratings distribution among all applications, 62% of the

applications have rating range between 4.1 and 4.6. For the

number of downloads, in Figure 4 we show the downloads

distribution. From the figure, there are thirty applications

with the range of fifty thousands and one hundred thousands

downloads. More than 50% of applications have download

rates between fifty thousands and five millions.

Keyboard apps fall under the “Productivity” category ac-

cording to Google categorization [20]. AppBrain [9] provides

statistics for all Android app categories, follows are some

information particularly given for the “Productivity” category:

1) The total number of apps in this category is 21154 apps

2) The average star rating is 4.0 out of 5.0

3) The number of apps in the category that have more than

50,000 downloads is 1700 apps which is about 8% of the

apps in the “productivity” category.

Based on our results and AppBrain statistics, we conclude

that most third-party keyboards request permissions that would

make them vulnerable to some serious attacks: 48.8% of these

apps are vulnerable to type A attack, 42% to type A+, 29% to

type B attack, and 24% to type B+. The number of downloads

as well as users’ numerical rating is considerably higher than

the average compared to the apps of their category.

VII. RECOMMENDATION AND PROPOSED SOLUTION

In this section, we provide a some recommendations and a

solution to prevent from spying/keylogging. We also discuss

the tool we developed to help users detect potential keylog-

ging/spying applications.

Fig. 6. The 17 most requested permissions and the percentage of third-party keyboards that request them

Fig. 8. Among the studied set, 15% requested 0 permission, 85% requested
one or more permission

1) Recommendations: In section IV, we describe the attack

vector and different attack scenarios. In addition, we provide

some recommendations for Android users, to protect them

against keyloggers to ensure that they don’t become a key

logging victim. The following steps would improve the user’s

chances in subverting a key logging threat:

1) Install applications from the official market especially the

keyboard apps.

2) Carefully read the application description, the ratings and

users’ comments.

3) Upon installation, check the requested permissions thor-

oughly, look for dangerous combinations.

4) When using a third-party keyboard, be alerted if there is

some slowness when typing or if you notice an increase

on the usage of Internet data plan.

The Android third-party developers must also be more

conservative in the permissions requests they mandate to

prevent attackers from using their keyboards to host malicious

components. Our analysis showed that the majority of third-

party keyboards requires several permissions. Nonetheless,

very few require no permissions at all.

A. Proposed Solution

Detecting keyloggers on Android can be done by either

monitoring function calls made by the keylogger or by check-

ing its characteristics. Our solution is based on the later

method, KBsChecker tool checks for any keylogging indica-

tors and alarms the user if any found. It does some analysis

on the installed Android applications specifically reads their

permissions and installation information. The tool retrieves

these information using Android PackageManager and that

includes: applications name, package name, version, required

features, path info, target SDK versions, installation data,

and last modified. Most importantly it retrieves the required

permissions for each application and service components.

Now, we scan the services list for each application to

determine if it is a third-party keyboard or contains an IME

service. In both cases we check the required permissions list

and search them for any dangerous combination that pose

security threat. At the first page of KBsChecker report is a

list of identified third-party keyboards, see Figure 9. The user

can click any of them to view its details information and

related alert message if they exist. For some attack scenarios

the previous information are very helpful, for instance, in case

that the attacker gets physical access to the victim device

and installs the keylogger app. The current analysis considers

malicious keylogging activity to be done by only one installed

Fig. 9. The first page a user sees when KBsChecker starts.

app. There are other scenarios where more than one app are

collaborating to achieve the same goal.

The application requests only one permission and requires

low processing and memory resources. The application will

be made available in the market for users to install and use.

VIII. CONCLUSION AND FUTURE WORK

The paper presented the risks of Android third-party key-

boards on user privacy and secrecy. The paper conducted

an analysis study on a set of 125 third-party Android key-

boards, collected from the market. The number and type of

permissions requested by these keyboards poses privacy risks.

We defined the attack vector for the possible attacks and the

permissions needed to make that happen. The majority of these

keyboards requested these permissions, thus posing security

risks. We also developed an Android application, KBChecker,

that help users find all third party keyboards installed on their

device and look for risk indicators. We conclude the work

with some advices and recommendations for both users and

third-party keyboard developers.

As future work, We will expand our solution to cover

scenarios where multiple apps are collaborating to keylog users

data. We will extend the current model by adding fourth step,

the sharing step. In that case, a malicious keyboard logs user’s

typing, share it with another malicious app on the system, and

that app can then sends it to a remote server. That requires

new ways to enumerate new scenarios and their indicators

and related permissions. We also planning on implementing

and making the solution available on the market.

IX. ACKNOWLEDGEMENTS

This research was partially supported by grants from the

National Science Foundation (NSF-CNS-0831360, NSF-CNS-

1117411) and a Google Research Award.

REFERENCES

[1] Android. Android keyboard class. ”http://developer.android.com/
reference/android/inputmethodservice/Keyboard.html/”, 2013.

[2] Android. Android keyboardview class. ”http://developer.android.com/
reference/android/inputmethodservice/KeyboardView.html/”, 2013.

[3] Android. Cupcake. ”http://developer.android.com/about/versions/
android-1.5-highlights.html/”, 2013.

[4] Android. Eclair. ”http://developer.android.com/about/versions/
android-2.0-highlights.html/”, 2013.

[5] Android. Gingerbread. ”http://developer.android.com/about/versions/
android-2.3-highlights.html/”, 2013.

[6] Android. Icecream. ”http://developer.android.com/about/versions/
android-4.0-highlights.html”, 2013.

[7] Android. Inputmethod. ”http://developer.android.com/reference/android/
view/inputmethod/InputMethod.html/”, 2013.

[8] Android. Inputmethodmanager. ”http://developer.android.com/reference/
android/view/inputmethod/InputMethodManager.html/”, 2013.

[9] AppBrain. Appbrain statistics. ”http://www.appbrain.com/”, 2013.
[10] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically

securing permission-based software by reducing the attack surface:
an application to android. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2012, pages 274–277, New York, NY, USA, 2012. ACM.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in android. In MobiSys, pages 239–252,
2011.

[12] E. Chin, A. P. Felt, V. Sekar, and D. Wagner. Measuring user confidence
in smartphone security and privacy. In SOUPS, page 1, 2012.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In R. Arpaci-Dusseau and
B. Chen, editors, OSDI 2010, 9th USENIX Symposium on Operating
Systems Design and Implementation, Berkeley, CA, USA, Oct. 2012.
USENIX; ACM SIGOPS, USENIX Association.

[14] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, pages 235–245, New
York, NY, USA, 2009. ACM.

[15] Epiphan. Hardware keylogger. ”http://www.epiphan.com/”, 2013.
[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android

permissions demystified. In ACM Conference on Computer and Com-
munications Security, pages 627–638, 2011.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: user attention, comprehension, and behavior. In
SOUPS, page 3, 2012.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission
re-delegation: Attacks and defenses. In USENIX Security Symposium,
2011.

[19] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining permission request
patterns from android and facebook applications. In ICDM, pages 870–
875, 2012.

[20] Google. Android categoration. ”https://support.google.com/googleplay/
android-developer/answer/113475?hl=en/”, 2013.

[21] Google. Softkeyboard sample. ”http://developer.android.com/tools/
samples/index.html/”, 2013.

[22] M. Mannan and P. C. van Oorschot. Using a personal device to
strengthen password authentication from an untrusted computer. Tech-
nical report, 2007.

[23] A. Martonik. Android market share. ”http://www.androidcentral.com/
android-us-market-share-dips-slightly-remains-top-april-2013/”, 2013.

[24] U. Meyer and S. Wetzel. A man-in-the-middle attack on umts. In
Proceedings of the 3rd ACM workshop on Wireless security, WiSe ’04,
pages 90–97, New York, NY, USA, 2004. ACM.

[25] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’10, pages 328–332, New York,
NY, USA, 2010. ACM.

[26] M. Z. P.A. Condado, R. Godinho and F. Lobo. Easywrite: A touch-
based entry methodfor mobile devices. In 13th IFIP TC13 International
Conference on Human-Computer Interaction , Workshop on Mobile
Accessibility., (INTERACT’11), 2011.

[27] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: privilege
separation for applications and advertisers in android. In ASIACCS,
pages 71–72, 2012.

[28] R. Racic. Exploiting mms vulnerabilities to stealthily exhaust mobile
phones battery. In In SecureComm 06, pages 1–10. SECURECOMM,
2006.

[29] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 95–109, Washington, DC, USA, 2012. IEEE
Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

