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Abstract—Large-scale sensor networks are deployed in numerous application domains, and the data they collect are used in
decision-making for critical infrastructures. Data are streamed from multiple sources through intermediate processing nodes
that aggregate information. A malicious adversary may introduce additional nodes in the network or compromise existing ones.
Therefore, assuring high data trustworthiness is crucial for correct decision-making. Data provenance represents a key factor
in evaluating the trustworthiness of sensor data. Provenance management for sensor networks introduces several challenging
requirements, such as low energy and bandwidth consumption, efficient storage and secure transmission. In this paper, we
propose a novel lightweight scheme to securely transmit provenance for sensor data. The proposed technique relies on in-
packet Bloom filters to encode provenance. We introduce efficient mechanisms for provenance verification and reconstruction at
the base station. In addition, we extend the secure provenance scheme with functionality to detect packet drop attacks staged
by malicious data forwarding nodes. We evaluate the proposed technique both analytically and empirically, and the results prove
the effectiveness and efficiency of the lightweight secure provenance scheme in detecting packet forgery and loss attacks.
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1 INTRODUCTION

Sensor networks are used in numerous application domains,

such as cyberphysical infrastructure systems, environmental

monitoring, power grids, etc. Data are produced at a large

number of sensor node sources and processed in-network at

intermediate hops on their way to a Base Station (BS) that

performs decision-making. The diversity of data sources

creates the need to assure the trustworthiness of data,

such that only trustworthy information is considered in the

decision process. Data provenance is an effective method

to assess data trustworthiness, since it summarizes the

history of ownership and the actions performed on the

data. Recent research [1] highlighted the key contribution of

provenance in systems where the use of untrustworthy data

may lead to catastrophic failures (e.g., SCADA systems).

Although provenance modeling, collection, and querying

have been studied extensively for workflows and curated

databases [2], [3], provenance in sensor networks has not

been properly addressed. We investigate the problem of

secure and efficient provenance transmission and processing

for sensor networks, and we use provenance to detect packet

loss attacks staged by malicious sensor nodes.
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In a multi-hop sensor network, data provenance allows

the BS to trace the source and forwarding path of an

individual data packet. Provenance must be recorded for

each packet, but important challenges arise due to the tight

storage, energy and bandwidth constraints of sensor nodes.

Therefore, it is necessary to devise a light-weight prove-

nance solution with low overhead. Furthermore, sensors of-

ten operate in an untrusted environment, where they may be

subject to attacks. Hence, it is necessary to address security

requirements such as confidentiality, integrity and freshness
of provenance. Our goal is to design a provenance encoding
and decoding mechanism that satisfies such security and

performance needs. We propose a provenance encoding

strategy whereby each node on the path of a data packet

securely embeds provenance information within a Bloom
filter that is transmitted along with the data. Upon receiving

the packet, the BS extracts and verifies the provenance

information. We also devise an extension of the provenance

encoding scheme that allows the BS to detect if a packet
drop attack was staged by a malicious node.

As opposed to existing research that employs separate

transmission channels for data and provenance [4], we only

require a single channel for both. Furthermore, traditional

provenance security solutions use intensively cryptography

and digital signatures [5], and they employ append-based

data structures to store provenance, leading to prohibitive

costs. In contrast, we use only fast Message Authentication

Code (MAC) schemes and Bloom filters (BF), which are

fixed-size data structures that compactly represent prove-

nance. Bloom filters make efficient usage of bandwidth,

and they yield low error rates in practice. Our specific
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contributions are:

• We formulate the problem of secure provenance trans-

mission in sensor networks, and identify the challenges

specific to this context;

• We propose an in-packet Bloom filter provenance-

encoding scheme;

• We design efficient techniques for provenance decod-

ing and verification at the base station;

• We extend the secure provenance encoding scheme

and devise a mechanism that detects packet drop
attacks staged by malicious forwarding sensor nodes;

• We perform a detailed security analysis and perfor-

mance evaluation of the proposed provenance encod-

ing scheme and packet loss detection mechanism.

The rest of the paper is organized as follows: Section 2 sets

the problem background and describes the system, threat

and security models. Section 3 introduces the provenance

encoding scheme, whereas Section 4 outlines the scheme

extension and the mechanism for identification of malicious

nodes that stage packet drop attacks. Section 5 presents

the security analysis of our methods. Section 6 provides

an analytical performance evaluation, whereas Section 7

presents the experimental evaluation results for the pro-

posed scheme. We survey related work in Section 8 and

conclude with directions for future research in Section 9.

2 BACKGROUND AND SYSTEM MODEL

In this section, we introduce the network, data and prove-

nance models used. We also present the threat model and

security requirements. Finally, we provide a brief primer on

Bloom filters, their fundamental properties and operations.

2.1 Network Model
We consider a multihop wireless sensor network, consisting

of a number of sensor nodes and a base station (BS) that

collects data from the network. The network is modeled as

a graph G(N,L), where N = {ni|, 1 ≤ i ≤ |N |} is the set

of nodes, and L is the set of links, containing an element

li,j for each pair of nodes ni and nj that are communicating

directly with each other. Sensor nodes are stationary after

deployment, but routing paths may change over time, e.g.,

due to node failure. Each node reports its neighboring (i.e.

one hop) node information to the BS after deployment. The

BS assigns each node a unique identifier nodeID and a

symmetric cryptographic key Ki. In addition, a set of hash

functions H = {h1, h2, ..., hk} are broadcast to the nodes

for use during provenance embedding.

2.2 Data Model
We assume a multiple-round process of data collection.

Each sensor generates data periodically, and individual val-

ues are aggregated towards the BS using any existing hier-

archical (i.e., tree-based) dissemination scheme [6]. A data

path of D hops is represented as < nl, n1, n2, ..., nD >,

where nl is a leaf node representing the data source, and

node ni is i hops away from nl. Each non-leaf node in the

BS
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Fig. 1. Provenance graph for a sensor network.
path aggregates the received data and provenance with its

own locally-generated data and provenance.

Each data packet contains (i) a unique packet sequence

number, (ii) a data value, and (iii) provenance. The se-

quence number is attached to the packet by the data

source, and all nodes use the same sequence number for a

given round [7]. The sequence number integrity is ensured

through MACs, as discussed in Section 3.

2.3 Provenance Model
We consider node-level provenance, which encodes the

nodes at each step of data processing. This representation

has been used in previous research for trust management [1]

and for detecting selective forwarding attacks [8]. Given

packet d, its provenance is modeled as a directed acyclic

graph G(V,E) where each vertex v ∈ V is attributed

to a specific node HOST (v) = n and represents the

provenance record (i.e. nodeID) for that node. Each vertex

in the provenance graph is uniquely identified by a vertex

ID (VID) which is generated by the host node using

cryptographic hash functions. The edge set E consists of

directed edges that connect sensor nodes.

Definition 1 (Provenance): Given a data packet d, the

provenance pd is a directed acyclic graph G(V,E) satis-

fying the following properties: (1) pd is a subgraph of the

sensor network G(N,L); (2) for vi, vj ∈ V , vi is a child

of vj if and only if HOST (vi) = ni participated in the

distributed calculation of d and/or forwarded the data to

HOST (vj) =nj ; (3) for a set U = {vi} ⊂ V and vj ∈ V ,

U is a set of children of vj if and only if HOST (vj) collects

processed/forwarded data from each HOST(vi ∈ U ) to

generate the aggregated result.

Figure 1 shows two provenance examples. In Figure

1(a), the leaf node nl generates a data packet d, and each

intermediate node aggregates its own sensory data with d
and then forwards it towards the BS. Hence, the provenance

corresponding to d is < vl, v1, v2, v3 >, which can be

represented as a simple path. In Figure 1(b), the internal

node n1 generates the data d by aggregating data d1 , ...,

d4 from nl1 , ..., nl4 and then passes d towards the BS.

Here, n1 is an aggregator and the aggregated provenance

< {vl1 , vl2 , vl3 , vl4}, v1, v2, v3 > is represented as a tree.
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Fig. 2. A Bloom filter with n = 4, m = 16 and k = 3.
2.4 Threat Model and Security Objectives

We assume that the BS is trusted, but any other arbitrary

node may be malicious. An adversary can eavesdrop and

perform traffic analysis anywhere on the path. In addition,

the adversary is able to deploy a few malicious nodes, as

well as compromise a few legitimate nodes by capturing

them and physically overwriting their memory. If an adver-

sary compromises a node, it can extract all key materials,

data, and codes stored on that node. The adversary may

drop, inject or alter packets on the links that are under

its control. We do not consider denial of service attacks

such as the complete removal of provenance, since a data

packet with no provenance records will make the data

highly suspicious [5] and hence generate an alarm at the

BS. Instead, the primary concern is that an attacker attempts

to misrepresent the data provenance. Our objective is to

achieve the following security properties:

• Confidentiality: An adversary cannot gain any knowl-

edge about data provenance by analyzing the contents

of a packet. Only authorized parties (e.g., the BS) can

process and check the integrity of provenance.

• Integrity: An adversary, acting alone or colluding with

others, cannot add or remove non-colluding nodes

from the provenance of benign data (i.e. data generated

by benign nodes) without being detected.

• Freshness: An adversary cannot replay captured data

and provenance without being detected by the BS.

It is also important to provide Data-Provenance Binding,

i.e., a coupling between data and provenance so that an

attacker cannot successfully drop or alter the legitimate data

while retaining the provenance, or swap the provenance of

two packets. Although this problem is orthogonal to the

method we propose, we address it in Section 3.3.

2.5 The Bloom Filter (BF)

The BF is a space-efficient data structure for probabilistic

representation of a set of items S = {s1, s2, ..., sn} using

an array of m bits with k independent hash functions

h1, h2, ..., hk. The output of each hash function hi maps an

item s uniformly to the range [0, m-1], i.e., an index in a

m-bit array. The BF can be represented as {b0, . . . , bm−1}.

Initially all m bits are set to 0.

To insert an element s ∈ S into a BF, s is hashed with

all the k hash functions producing the values hi(s)(1 ≤
i ≤ k). The bits corresponding to these values are then set

to 1 in the bit array. Figure 2 illustrates an example of BF

insertion.To query the membership of an item s′ within S,

the bits at indices hi(s
′)(1 ≤ i ≤ k) are checked. If any

of them is 0, then certainly s′ �∈ S. Otherwise, if all of

the bits are set to 1, s′ ∈ S with high probability. There

exists a possibility of error which arises due to hashing
collision that makes the elements in S collectively causing

indices hi(s
′) being set to 1 even if s′ �∈ S. This is called

a false positive. Note that, there is no false negative in the

BF membership verification.

Several BF variations that provide additional function-

ality exist. A Counting Bloom Filter (CBF) [9] asso-

ciates a small counter with every bit, which is incre-

mented/decremented upon item insertion/deletion. To an-

swer approximate set membership queries, the distance-
sensitive Bloom filter [10] has been proposed. However,

aggregation is the only operation needed in our problem

setting. The cumulative nature of the basic BF construction

inherently supports the aggregation of BFs of a same kind,

so we do not require CBFs or other BF variants.

3 SECURE PROVENANCE ENCODING

We propose a distributed mechanism to encode provenance

at the nodes and a centralized algorithm to decode it at

the BS. The technical core of our proposal is the notion of

in-packet Bloom filter (iBF) [11]. Each packet consists of

a unique sequence number, data value, and an iBF which

holds the provenance. We emphasize that our focus is on se-

curely transmitting provenance to the BS. In an aggregation

infrastructure, securing the data values is also an important

aspect, but that has been already addressed in previous

work (e.g., [12]). Our secure provenance technique can be

used in conjunction with such work to obtain a complete

solution that provides security for data, provenance and

data-provenance binding, as shown in Section 3.3.

3.1 Provenance Encoding
For a data packet, provenance encoding refers to generating

the vertices in the provenance graph and inserting them into

the iBF. Each vertex originates at a node in the data path

and represents the provenance record of the host node. A

vertex is uniquely identified by the vertex ID (VID). The

VID is generated per-packet based on the packet sequence

number (seq) and the secret key Ki of the host node. We

use a block cipher function to produce this VID in a secure

manner. Thus for a given data packet, the VID of a vertex

representing the node ni is computed as

vidi = generateV ID(ni, seq) = EKi(seq) (1)

where E is a secure block cipher such as AES, etc.

When a source node generates a packet, it also creates a

BF (referred to as ibf0), initialized to 0. The source then

generates a vertex according to Eq. (1), inserts the VID into

ibf0 and transmits the BF as a part of the packet.

Upon receiving the packet, each intermediate node nj

performs data as well as provenance aggregation. If nj

receives data from a single child nj−1, it aggregates the

partial provenance contained in the packet with its own

provenance record. In this case, the iBF ibfj−1 belonging

to the received packet represents a partial provenance, i.e.,

the provenance graph of the sub-path from the source
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(a) (b)

Fig. 3. (a) Mechanism for encoding provenance (node 1 is data source). (b) Provenance processing workflow at
the BS upon receiving a packet.
upto nj−1. On the other hand, if nj has more than one

child, it generates an aggregated provenance from its own

provenance record and the partial provenance received from

its child nodes. At first, nj computes a BF ibfj−1 by

bitwise-ORing the iBFs from its children. ibfj−1 represents

a partial aggregated provenance from all of the children. In

either case, the ultimate aggregated provenance is generated

by encoding the provenance record of nj into ibfj−1. To

this end, nj creates a vertex using Eq. (1) and inserts the

VID into ibfj−1 which is then referred to as ibfj .

When the packet reaches the BS, the iBF contains the

provenance records of all the nodes in the path i.e. the full

provenance. We denote this final record by ibf .

Example: We illustrate the encoding mechanism in Fig-

ure 3(a). The data path considered is < 1, 4, 7 >, where

node 1 is the data source. We use a 10-bit BF and a set

of 3 hash functions H = {h1, h2, h3} for BF operations.

When node 1 generates a data packet with sequence number

seq, it creates the BF ibf0 which is set to all 0’s. The node

then creates a vertex corresponding to its provenance record

and computes the VID as vid1 = EK1(seq). To insert vid1
into ibf0, node 1 generates three indices as h1(vid1) = 1,

h2(vid1) = 3, h3(vid1) = 8. The VID is then inserted by

setting ibf0[1], ibf0[3], and ibf0[8] to 1. The updated ibf0
along with the packet is then sent towards the BS.

Upon receiving the packet, node 4 performs provenance

aggregation. Since the node has one child, it only aggre-

gates its own provenance record with ibf0. For this purpose,

the node generates a VID vid4; computes 3 indices as

h1(vid4) = 3, h2(vid4) = 6, h3(vid4) = 9; and inserts

vid4 into ibf0 by setting bits 3, 6, 9 of the iBF to 1. This

updated iBF is referred to as ibf1. The data packet with ibf1
is then forwarded to node 7 which repeats the provenance

aggregation steps. At the end, the BS receives the packet

with the final iBF (ibf2 from node 7) and stores this iBF

for further processing.

3.2 Provenance Decoding

When the BS receives a data packet, it executes the

provenance verification process, which assumes that the

BS knows what the data path should be, and checks the

iBF to see whether the correct path has been followed.

However, right after network deployment, as well as when

the topology changes (e.g., due to node failure), the path

of a packet sent by a source may not be known to the BS.

In this case, a provenance collection process is necessary,

which retrieves provenance from the received iBF and thus

the BS learns the data path from a source node. Afterwards,

upon receiving a packet, it is sufficient for the BS to

verify its knowledge of provenance with that encoded in

the packet. Below we discuss these processes in detail:

Algorithm 1 ProvenanceVerification

Input: Received packet with sequence seq and iBF ibf.
Set of hash functions H , Data path P ′ = < n′

l1
, ..., n′

1, ..., n
′
p >

BFc ← 0 // Initialize Bloom Filter

for each n′
i ∈ P ′ do

vid′i = generateVID (n′
i, seq)

insert vid′i into BF c using hash functions in H
endfor
if (BFc = ibf ) then

return true // Provenance is verified
endif
return false

Provenance Verification: The BS conducts the verifica-

tion process not only to verify its knowledge of provenance

but also to check the integrity of the transmitted prove-

nance. Algorithm 1 shows the steps to verify provenance

for a given packet. We assume that the knowledge of

the BS about this packet’s path is P ′. At first, the BS

initializes a Bloom filter BFc with all 0’s. The BF is then

updated by generating the VID for each node in the path
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P ′ and inserting this ID into the BF. BFc now reflects the

perception of BS about the encoded provenance. To validate

its perception, the BS then compares BFc to the received

iBF ibf . The provenance verification succeeds only if BFc

is equal to ibf . Otherwise, if BFc differs from the received

iBF, it indicates either a change in the data flow path or a

BF modification attack. The verification failure triggers the

provenance collection process which attempts to retrieve the

nodes from the encoded provenance and also to distinguish

between the events of a path change and an attack.

Provenance Collection: As illustrated in Algorithm 2,

the provenance collection scheme makes a list of potential

vertices in the provenance graph through the ibf mem-

bership testing over all the nodes. For each node ni in

the network, the BS creates the corresponding vertex (i.e.

vi with VID vidi) using Eq. (1). The BS then performs

the membership query of vidi within ibf . If the algorithm

returns true, the vertex is very likely present in the prove-

nance, i.e., the host node ni is in the data path. Such an

inference might introduce errors because of false positives

(a node not on the route is inferred to be on the route).

However, as we show later in Section 6, the false positive

probability obtained is very low.

Once the BS finalizes the set of potential candidate nodes

S = < n′
l1
, ..., n′

1, n
′
2, ..., n

′
p >, it executes the provenance

verification algorithm on this set. This step is required to

distinguish between the cases of a legitimate route change

and that of malicious activity. If the verification succeeds,

we decide that there was a natural change in the data path

and we have been able to determine the path correctly.

Otherwise, an attack has occurred.

A possible attack is the all-one attack where all bits in

the provenance are set to 1, which implies the presence of

all nodes in the provenance. To address the issue, we use a

density metric γ introduced in [13]. γ reflects the number of

1’s in the provenance (i.e. the iBF) as a fraction of the total

size. To consider the provenance valid, we require that the

density is equal or below a certain threshold: γ ≤ γmax.

Such a requirement is reasonable since in a BF with n
elements and k hash functions, there may be at most kn
bits marked as ’1’. Hence, we can always find an upper

bound for the number of 1’s in a BF. Thus, the maximum

number of allowable 1’s is mγmax. Within this bound, an

attacker may also randomly flip some bits to add or delete

a legitimate node. The chance of being successful in this

attack is very small since the attacker has to identify k bit

positions corresponding to the node, which again change for

each packet. If each bit is guessed randomly, the probability

that the attacker guesses all of them correctly is given by
1
2m . Moreover, an attempt of blindly altering some bits is

detected since the verification process at the end of the

provenance collection phase does not succeed. A successful

attack occurs when the bits set by the attacker (limited by

γmax) make all the k bits corresponding to a legitimate

node turn out to be ’1’. If the data provenance includes n
nodes, the kn hash results may map to at least one and

at most mγmax bits. Thus a smart attacker marks upto

Algorithm 2 ProvenanceCollection

Input: Received packet with sequence seq and iBF ibf.
Set of nodes (N ) in the network, Set of hash functions H

1. Initialize

Set of Possible Nodes S ← ∅
Bloom Filter BFc ← 0 // To represent S

2. Determine possible nodes in the path and build the repre-
sentative BF

for each node ni ∈ N do
vidi = generateVID (ni, seq)

if (vidi is in ibf ) then
S ← S ∪ ni

insert vidi into BF c using hash functions in H
endif

endfor
3. Verify BF c with the received iBF

if (BFc = ibf ) then
return S // Provenance has been determined correctly

else
return NULL // Indicates an in-transit attack

endif

(mγmax − 1) bits. The total number of bit patterns by

(mγmax − 1) hash computations is

B =

(mγmax − 1)∑
i=1

(
m

i

)

Randomly guessing one of them has 1
B chance of success.

Hence, the manipulation attack has a very small success

probability. The workflow shown in Fig. 3(b) summarizes

the provenance decoding process.

3.3 Scheme for Data-Provenance Binding
One of the important security challenges for a provenance

scheme is to tie-up data and provenance. In an aggregation

infrastructure, the data value is updated at each intermediate

node which makes it a crucial problem to maintain the

relationship between provenance and the intermediate data.

A trivial solution can be based on making the provenance

encoding mechanism dependent on the partial aggregation

results (PAR) and append each PAR to the packet to verify

the data-provenance binding at the BS. However, such an

overhead nullifies the benefit of data aggregation. Hence,

we formalize the problem in a slightly different way:

If the data aggregation result is verified at the BS, then
the data-provenance coupling is ensured at each node in
the routing path.

Since our concern is to devise a secure provenance scheme,

we utilize secure in-network aggregation mechanisms to

connect provenance with the intermediate aggregation re-

sults. Our objective is to incorporate our provenance

scheme with a secure aggregation mechanism so that the

aggregation verification process can also be used to check

the data-provenance binding.

To serve this purpose, we can utilize an existing secure

aggregation scheme such as [12], [14], [15]. To do so,
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we include some Partial Provenance Information (PPI)
at each aggregation node so that the data-provenance

binding is guaranteed through the data aggregation ver-

ification scheme at the BS. We adapt the verifiable in-

network aggregation scheme proposed by Garofalakis et

al. [12]. However, other similar schemes can be investigated

and adapted to accommodate provenance information and

hence, data-provenance binding. We first present a brief

description of the scheme in [12], followed by a discussion

on how it can be integrated with our proposed approach.

Background: The scheme in [12] allows parties in a

distributed aggregate computation to verify that the final

result has not been perturbed by more than a small error

bound with high probability. The objective is to construct a

verifiable random sample of given size p over the sensors’

data values. The scheme ensures that the result computed

by the aggregators is verifiably an unbiased random sample

of the data. The sample is a general-purpose summary

of the sensors’ data that can be used to approximate

verifiably a variety of different aggregation functions, not

known beforehand. The key problem in the threat model is

verifying the sampling procedure run by each aggregator.

Data aggregation is performed via three functions: an

initializer I(d) on data d generated by source node nl,

a merging function M , and an evaluator function E . M
has the form 〈z〉 = M (〈x〉, 〈y〉), where 〈x〉 and 〈y〉 are

multi-valued partial state records (PSRs) representing the

intermediate state that will be required to compute an

aggregate. 〈z〉 is the PSR resulting from the application

of M to 〈x〉 and 〈y〉.
The basic technique combines Flajolet-Martin (FM)

sketches and compact cryptographic signatures termed as

authentication manifests (AM) to verify count aggregates.

The solution from [12], AM-Sample proof sketches, collects

a random sample by mapping 〈dataRecord, sensorID〉
elements to buckets with exponentially decreasing prob-

abilities, using hash functions as in FM. Thus, given a

uniformly randomizing hash function f over 〈di, ni〉 pairs,

where di is the data record at sensor ni and a sample size

p, an AM-Sample proof sketch is a pair 〈L,A〉. Here,

A = {〈l1, d1, n1, sn1(d1)〉, ..., 〈lt, dt, nt, snt(dt)〉} is a sub-

set of t AMs 〈li, di, ni, sni(di)〉 with corresponding bucket

levels li = lsb (f(di||ni)). The function lsb(.) denotes

the position of the least-significant ’1’ bit in the input

binary string, || denotes concatenation, and sni(di) repre-

sents a valid signature on data di by sensor ni. A well-

formed AM-Sample sketch stores exactly the AMs for

〈dataRecord, sensorID〉 elements at levels ≥ L.

A concise description of the aggregation scheme for AM-
Sample proof sketches is as follows. First, the algorithm

computes the AMs and bucket levels for individual sensors

as in Eq. (2).

I(d) = 〈0, {〈lsb(f(d||nl)), d, nl, snl
(d)〉}〉 (2)

Next, these manifests are unioned up the aggregation

topology, only keeping elements at the maximum level

max(L1, L2) with every PSR merge. To keep the sketch

size under control, the sampling rate drops by a factor of

2 when the sample size grows beyond 2p(1 + ξ), where

ξ < 1 denotes an error parameter [12]. Formally,

M (〈L1,A1〉, 〈L2,A2〉) = 〈L,A(L,A1,A2)〉
where,

〈L,A(L,A1,A2)〉 = {〈l, d, n, sn(d)〉 ∈ A1 ∪ A2 : l ≥ L}
and

L =

{
max(L1, L2), |〈L,A(L,A1,A2)〉| ≤ (1 + ξ)2p

max(L1, L2) + 1 otherwise

Finally, the evaluation at the BS is performed as

E(〈L, A〉) = {d : 〈l, d, n, sn(d)〉 ∈ A}
The AM-Sample proof sketches protect against the adver-

sarial inflation of the collected random sample in two ways.

First, through the use of authentication manifests for data

tuples, the sketch prevents aggregators from forging new

data, since all tuples are signed by a sensor. Second, AM

signatures also prevent aggregators from migrating tuples

across bucket levels (thereby biasing random sampling

choices) since the level is determined through hashing by

the signed tuple and sensor identifier. The scheme also

prevents the aggregators from removing specific data from

input PSRs, i.e., dropping child data during aggregation.

The more recent work in [15] deals with attacks against

the synopsis diffusion and presents a lightweight verification
algorithm to verify at BS if the computed aggregate is

correct. The verification protocol computes several syn-

opses verified independently through three phases. In the

query dissemination phase, the BS broadcasts the name

of the aggregation to compute and a random seed. In the

aggregation phase, each node computes a subaggregate

value based on the local value and the synopses of its

children. The node also randomly selects a set of MACs

from the MACs generated locally and the received ones

from its children. Finally, in the verification phase, the BS

computes the final synopsis using the messages from its

child nodes and verifies the received MACs. This scheme

can also be used in our work, but for brevity, we focus on

the scheme from [12].

Extension for Data-Provenance Binding: To achieve

data-provenance binding, we extend the above algorithm

as follows. First, we modify the I function to

I(d) = 〈0, { 〈 lsb (f(d||nl||b) ), d, nl, b, snl
(d||b) 〉 }〉

Here, b represents the number of ’1’ bits in the generated

or aggregated iBF at node nl. Since an intermediate node

ni also aggregates its own sensory data with the child data,

the merge function L should include a PSR corresponding

to the data and the provenance record of ni, as follows:

〈L,A(L,A1,A2)〉 = {〈l, d, n, b, sn(d||b)〉 ∈ A1 ∪ A2 : l ≥ L}
∪ {〈 lsb (h(di||ni||bi) ), di, ni, bi, sni(di||bi) 〉}

The modified AM-Sample proof sketch depends on data

as well as provenance. While constructing the BF for

provenance decoding, the BS counts the number of 1’s in

the BF after inserting the provenance record of each node

and feeds the count value to the aggregation verification

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

process. Thus, the aggregation verification succeeds only

when both the data and the provenance are transmitted

without perturbation. Note that, the order in which the

nodes embedded their provenance record, i.e., the edges

in the provenance graph might be useful in this context.

4 DETECTING PACKET DROP ATTACKS

We extend the secure provenance encoding scheme to detect

packet drop attacks and to identify malicious node(s). We

assume the links on the path exhibit natural packet loss

and several adversarial nodes may exist on the path. For

simplicity, we consider only linear data flow paths (i.e., as

illustrated in Fig. 1(a)). Also, we do not address the issue

of recovery once a malicious node is detected. Existing

techniques that are orthogonal to our detection scheme can

be used, which may initiate multipath routing [16] or build

a dissemination tree around the compromised nodes [17].

We augment provenance encoding to use a packet-

acknowledgement that requires the sensors to transmit

more meta-data. For a data packet, the provenance record

generated by a node will now consist of the node ID and

an acknowledgement in the form of a sequence number

of the lastly seen (processed/forwarded) packet belonging

to that data flow. If there is an intermediate packet drop,

some nodes on the path do not receive the packet. Hence,

during the next round of packet transmission, there will be

a mismatch between the acknowledgements generated from

different nodes on the path. We utilize this fact to detect

the packet drop attack and to localize the malicious node.

We consider a data flow path P where nl is the only data

source. We denote the link between nodes ni and n(i+1)

as li. We describe next packet representation, provenance

encoding and decoding for detecting packet loss.

4.1 Data Packet Representation

To enable packet loss detection, a packet header must

securely propagate the packet sequence number generated

by the data source in the previous round. In addition, as in

the basic scheme, the packet must be marked with a unique

sequence number to facilitate per-packet provenance gen-

eration and verification. Thus, in the extended provenance

scheme, any jth data packet contains (i) the unique packet

sequence number (seq[j]), (ii) the previous packet sequence

number (pSeq), (iii) a data value, and (iv) provenance.

4.2 Provenance Encoding

Fig. 4 depicts the extended provenance encoding process.

The provenance record of a node includes (i) the node

ID, and (ii) an acknowledgement of the lastly observed

packet in the flow. The acknowledgement can be generated

in various ways to serve this purpose. In our solution,

a node ni creates a vertex vi for every jth packet it

generates/forwards. The vertex ID vidi is generated as:

vidi = generateV ID (ni, seq[j], pSeqi ) (3)

= EKi( seq[j] || pSeqi )

Fig. 4. Extended provenance framework to detect
packet drop attacks and identify malicious nodes.

where pSeqi is the knowledge of ni about the sequence

number of the previous packet in the flow. ni updates the

provenance of the packet by inserting vidi into the iBF.

Note that, a node must maintain a per-flow record to store

the previous packet sequence for each data flow that passed

through the node. After a node ni processes/forwards any

jth packet, it updates the pSeqi record for the correspond-

ing data flow with the recently processed packet sequence,

seq[j]. If a node receives a packet from a data flow for

which it has no previous packet information, then it may use

a pre-specified special purpose identifier, such as 0, as the

previous packet sequence pSeqi. This addresses the case of

routing path changes where a new node in the path can use

this special identifier for encoding provenance. Moreover, if

a node does not receive packets from a data flow for a long

time, it can erase the previous packet information for that

flow to reduce space overhead. The node can get updated

and maintain this flow-specific record when it receives

packets from that flow more frequently.

4.3 Provenance Decoding at the BS
Not only the intermediate nodes, but also the BS stores and

updates the latest packet sequence number for each data

flow. Upon receiving a packet, the BS retrieves the preced-

ing packet sequence (pSeq) transmitted by the source node

from the packet header, fetches the last packet sequence for

the flow from its local storage (pSeqb), and utilizes these

two sequences in the process of provenance verification and

collection.

Provenance Verification: Similar to the basic scheme in

Section 3, the BS first executes the provenance verification

process upon receiving a packet. The BS knows (i) the cur-

rent data path for the packet (decoded from the provenance

of the previous packet in the flow), and (ii) the preceding

packet sequence number forwarded by each node in the

path. In this context, the BS assumes that each node in the

path saw and forwarded the same packet in the last round,

and that this packet’s sequence number is the same one as

recorded at the BS. Thus the verification is bound to fail

when pSeq and pSeqb do not match, which also indicates

a possible packet loss and suffices to execute provenance

collection process directly skipping the verification.

The provenance verification is performed according to

algorithm 1, with the only difference that the BS now uses
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Fig. 5. Provenance Collection, Packet Loss Detection,
and Malicious Node Identification.
Eq. (3) to create the VID for a node. Verification failure

here indicates either a change in the data flow path, a packet

drop attack or a BF modification attack, and triggers the

provenance collection process.

Provenance Collection: Collection attempts to retrieve

the nodes from the encoded provenance, confirm a packet

loss and identify the malicious node that dropped the

packet. It also distinguishes between the packet drop attack

and other attacks that might have altered the iBF.

Note that, in case of a path change, the new nodes can be

easily learnt through an iteration of ibf membership testing

over all the nodes. During provenance encoding, every new

node in the path uses a special purpose packet identifier

(e.g., 0) as the previous packet sequence and generates its

VID as EKi(seq[j]||0). Therefore, to retrieve the new nodes

in the path, the decoding scheme at the BS should perform

an ibf membership testing over all the nodes, where the

VID for each node will be generated using the pre-specified
previous packet identifier, along with the nodeID and the

packet sequence number, seq[j].
For the remainder of the discussion, we assume that a

data packet d[j] has been dropped by an intermediate node

ni. Thus, the nodes nl, n1, ..., ni received d[j] and updated

their lastly seen packet sequences to seq[j]. On the contrary,

nodes ni+1, ..., np as well as the BS did not observe d[j],
They have no information to update the preceding packet

sequence, and they retain the same old identifier seq[j−1].
Upon receiving the next packet in the flow, nl, n1, ..., ni−1

include seq[j] in the provenance metadata, whereas

ni+1, ..., np use seq[j−1] for this purpose when computing

their VIDs. However, the malicious node ni may either

(i) use seq[j], or (ii) use seq[j − 1]. Without any loss

of generality, we assume that the malicious node encodes

seq[j − 1] in the provenance BF.

Fig. 5 illustrates the provenance collection algorithm

which can retrieve the nodes in a data path even in the

presence of packet loss. Upon receiving the next packet

(i.e. the (j + 1)th packet), the BS checks the membership

of all nodes in the network within the iBF using a two step

process. The first query is performed with the identifier of

the last packet (pSeqb) recorded at the BS, and the next

one with the previous packet sequence (pSeq) contained

in the packet header. We denote the set of nodes found in

the first and second step by S1 = < n′
i, ..., n

′
p > and S2 =

< n′
l, n

′
1, ..., n

′
(i−1) >, respectively. Let the BFs constructed

with S1 and S2 be BF1 and BF2, respectively. The final

Bloom filter BFc is constructed as a bitwise-OR of BF1

and BF2 and reflects the perception of the BS about the

encoded provenance.

Using as input the set of potential candidate nodes

S = S1 U S2, the BS executes a verification algorithm

in order to distinguish between the packet drop attack and

any other iBF modification attacks. If BFc and the received

iBF ibf match, the verification succeeds. In this case, we

confirm the event of a packet loss and decide that the path

constructed on the set of nodes S is equivalent to path

P . Thus, we have been able to determine the provenance

correctly. Otherwise, some unknown attack has occurred.

Note that, if no packet drop attack occurred, the first query

is sufficient to compute the provenance.

Malicious Node Identification: If S represents the actual

data flow path P , then S2 = < nl, n1, ..., n(i−1) > and

S1 = < ni, ..., np >. Thus, we can conclude that the link

l(i−1) was the one where the packet was lost. However, if

we would have assumed that the malicious node encodes

seq[j], then the BS would have detected li as the location

of the loss. In either case, an adjacent link to the malicious

node is identified, and the node can be marked a such. To

confirm that the faulty link l(i−1) is where the packet loss

occurred, the BS observes more packets. Whenever the BS

identifies a packet loss and the responsible link l(i−1), it

updates the empirical loss rate el(i−1) for the link. Assume

that the drop rate threshold for a link is α, where α is

greater than the natural loss rate of any link. If after a

number of packet transmissions, el(i−1) > α, then the BS

asserts that l(i−1) was the link where the packet was lost,

and identifies ni as malicious.

5 SECURITY DISCUSSION

In this section, we discuss the security properties of the

proposed provenance scheme.

Confidentiality.
Claim 1: It is computationally infeasible for an attacker to
gain information about the sensor nodes included in the
provenance by observing data packets.
Justification: The confidentiality of the scheme is achieved

through two factors: the use of BF and the use of encryption

keys. When one-way hash functions are used to insert

elements in the BF, the identities of the inserted elements
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cannot be reconstructed from the BF representation. An

attacker may collect a large sample of iBFs to infer some

common patterns of the inserted elements. If the attacker

has the knowledge of the complete element space (i.e.

provenance records of all the nodes) and the hashing

schemes, it can try a dictionary attack by testing for the

presence of every element and obtain a probabilistic answer

to what elements are carried in a given iBF. However, the

elements inserted in the iBF, i.e., provenance records of the

nodes, depend on a per-packet variable - sequence number,

and also there is a secret key that is used in deriving the

node VIDs that are inserted in the iBF. For legitimate nodes,

these secrets are unknown to the attacker, as each key Ki

is shared only between the node and the BS. To increase

the level of security, we can use pseudo-random functions

(PRFs) seeded with the secret key and produce a different

key instance at each epoch [18]. Therefore, the shared key

is not directly exposed, and each instance key is used only

once. Thus, even if an adversary obtains plaintexts and

corresponding ciphertexts for one epoch, the confidentiality

at other time epochs is preserved. To conclude, an attacker

cannot gain any information through the observation of

packets and the encoded provenance. �
Integrity.

Claim 2: An attacker, acting alone or colluding with
others, cannot successfully add or legitimate nodes to the
provenance of data generated by the compromised nodes.
Justification: Attacker(s) may attempt to generate fake data

and construct the provenance including some innocent

nodes < n′
l, n

′
1, n

′
2, ..., n

′
p > to make them responsible for

false data and consequently to mark them as untrustworthy.

However, the provenance embedding process requires the

node specific secret Ki for cryptographic computation of

the corresponding VID, and the attackers do not know the

key for the legitimate nodes. Hence, this attack will fail. �
Claim 3: An attacker or a set of cooperative attackers

cannot selectively add or remove nodes from the prove-
nance of data generated by benign nodes.
Justification: Assume that ne and nm collude to ex-

ecute an attack. A benign packet with provenance <
nl, ..., n1, n2, ..., np > is routed through ne. For this packet,

ne wants to remove n2 from the provenance and to replace

it with another legitimate node n′
2, utilizing any knowledge

from nm. When the packet reaches ne, it contains the

partial provenance < nl, ..., n1, ..., ne > encoded in the

iBF ibfpp. To remove n2 from provenance, at first ne has to

construct the Bloom filter BF2 containing the provenance

record of n2. Then, by performing a bitwise-AND of the

bitwise negation of BF2 with ibfpp, ne removes the infor-

mation of n2 from the provenance. Assume the modified

iBF is ibf ′
pp. To add n′

2 to the provenance after the removal

of n2, the BF corresponding to n′
2 should be built and then

OR-ed with ibf ′
pp.

In both cases, the attackers have to construct a BF

representing an uncompromised node. This requires the

knowledge about secrets of these legitimate nodes which

are unknown to ne and nm. Furthermore, the provenance

record of a node changes dynamically for each packet. So

the attackers cannot utilize any old BF.

However, ne and nm can collude to remove benign nodes

more intelligently, where nm (in or outside the path) reports

its observation of the iBF state to ne. Upon receiving

the packet, ne zeroes all the 1’s added to the iBF since

nm’s observation, and thus removes provenance records

of the corresponding nodes. Since our data-provenance

binding solution adds PPI to data at each intermediate

(i.e. aggregator) node, this attack fails the data aggregation

verification at the BS and hence, the attack is detected. �
Claim 4: A malicious aggregator cannot selectively drop a
child node from the provenance.

Justification: As illustrated in Fig. 1(b), there are two

types of data aggregation. The cluster head (e.g. n1) ag-

gregates data from all of the nodes in its cluster whereas

an intermediate node (e.g. n2) aggregates its sensed data

with the data received from child node (i.e. n1). Thus, we

consider two scenarios:

(i) Aggregator n1 drops the incoming data from a child

node (e.g., nl2 ) and computes the aggregated data and

provenance excluding it. The scheme from [12] prevents

nodes from dropping child data during aggregation. Our

data-provenance binding solution integrates PPI with the

partially aggregated data. Hence, it detectd when the data

or provenance record of a child is dropped.

(ii) Intermediate node n2 discards the data and partial

provenance received from child node n1. Since this attack

represents a packet dropping attack, it is detected by the BS

with the scheme described in section 4. Node n2 cannot

selectively remove the provenance of n1. However, n2

might also forward the data as it is but discard the partial

provenance. This will destroy the data-provenance binding

which will be detected as discussed in Section 3.3. �
Freshness.
Claim 5: Provenance replay attacks are detected by our
proposed scheme.
Justification: Since provenance encoding depends on a

packet specific information, the value of the constructed iBF

varies from packet to packet. Hence, malicious attempts to

associate a previously captured iBF with a more recent data

packet (benign/fake) is detected at the BS. �
6 PERFORMANCE ANALYSIS
We present an analysis of the space and energy overhead

of our scheme. We use the following benchmarks:
(i) We adapt the generic secure provenance framework

SProv [5] to sensor networks. In this lightweight version

of the scheme, referred to as SSP , we simplify the prove-

nance record at a node ni as Pi =< ni, hash(Di), Ci >,

where hash(Di) is a cryptographic hash of the up-

dated data, and Ci contains an integrity checksum as

Sign(hash(ni, hash(Di)|Ci−1)).
(ii) We also consider a MAC-based provenance scheme,

referred to as MP, where a node transmits the nodeID and

a MAC computed on it as the provenance record.

6.1 Space Complexity
To implement SSP, we use SHA-1 (160 bit) for crypto-

graphic hash operations and the TinyECC library [19] to
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generate 160-bit digital signatures (ECDSA). The nodeID

has length 2 bytes, thus the length of each provenance

record is 42 bytes. For MP, we use TinySec library [20] to

compute a 4-byte CBC-MAC. Hence, a provenance record

has 6 bytes in this case. As each node in the path encodes

its own provenance record, the provenance size increases

linearly with the number of hops. For a D-hop path, the

provenance is 42D bytes in SSP and 6D bytes in MP.
Since our approach is based on the BF, the provenance

length depends on parameter selections for the BF. The

false positive probability for a BF is defined as [21]

Pfp =
na − n

nt − n
where nt is the total number of distinct elements in the el-

ement space, n is the number of elements actually encoded

in the BF and na is the number of elements retrieved by

querying the BF. Let m be the BF size, k the number of

hash functions and D the maximum number of nodes in

any path. The false positive probability is equal to that of

getting 1 in all the k array positions computed by the hash

functions while querying the membership of an element

that was not inserted in the BF. The probability is [22]

Pfp = (1− (1− 1

m
)kD)k ≈ (1− e−

kD
m )k (4)

For a given m and D, the number of hash functions that

minimizes the false positives is computed as [22]

kopt =
m

D
ln2 (5)

Given D and a desired false positive probability Pfp, the

required number of bits m can be computed by substituting

the optimal value of k in Eq. (4) and then simplifying it to

ln(Pfp) = −m

D
∗ (ln2)2 ⇒ m =

−D ∗ ln(Pfp)

(ln2)2
(6)

This means that to maintain a fixed false positive proba-

bility, the length of a BF should grow with the number

of elements. For example, if we consider Pfp = 0.02 and

a 14-hop path, the BF size m is computed as 114 bits

and kopt = 6. Thus, a 120-bit (15 byte) BF is sufficient to

encode provenance while maintaining low false positives.

In practice, we bound Pfp by a small constant δ (> 0) such

that Pfp < δ. To find the appropriate value of m we have

ln(Pfp) > lnδ ⇒ −m

D
∗ (ln2)2 > lnδ ⇒ m <

Dln 1
δ

(ln2)2

6.2 Energy Consumption
For a D-hop path, SSP has to transmit 42 ∗ D bytes (=

336 ∗ D bits), MP transmits 6 ∗ D bytes (= 48 ∗ D bits)

whereas our scheme requires transmitting m bits. SSP, MP

and our scheme consume a radio energy proportional to

(336∗D), (48∗D) and
ln 1

δ

(ln2)2 ∗D, respectively. Although all

of the terms are proportional to D, the constant coefficient

in the first two terms are much larger than the last one.

For example, if we set δ = 10−4 then the coefficient

in our scheme is 19.17 which is much smaller than the

coefficients in SSP and MP. Another part of overhead

comes from the signature, MAC and hash computations.

However, in sensor networks, computation overhead is

much smaller than communication, and adds only marginal

energy consumption [23].

6.3 Detection of Packet Drop Attacks

Provenance is used to detect packet loss attacks, and to

identify the malicious node(s). As discussed in Section 4,

the first step in identifying the malicious node is to detect

the link where the loss occurred. The detection error

depends on the BF parameters and the analysis from

Section 6.1 applies to this case as well, with the only

difference that the element space is larger now due to the

addition of packet sequence information in the node VID.

Hence, a larger BF is required to keep the false positive

rate small.

Since packet drop attacks directly reduce the amount of

legitimate data throughput, we also analyze our scheme

to provide the theoretical bounds for guaranteed end-to-

end throughput and for attack detection rate. Let ρi be the

natural packet loss rate (i.e., in the absence of attacks) of

link li, where ρi’s are i.i.d. random variables with maximum

value ρ. Let α denote the per-link drop rate threshold.

The theoretical bounds are computed under the condition

that the empirical loss rate converges to its true value

within a small uncertainty interval ε. The detection rate

of the proposed scheme, i.e., the number of data packets

transmitted by the source before reaching the converging

condition is computed as follows:

Theorem 1: Given the threshold α = ρ+ε and the allowed
false positive σ, the scheme requires ln( 2

σ )

2ε2(1−ρ−ε)D
packets

to be transmitted by the source to achieve the converging
condition.

Proof. At first, we determine the number of packet

transmissions required to estimate the drop rate of a single

link li within a certain accuracy interval. We consider

that the actual packet loss rate of link li is r∗i , and the

empirical loss rate is ri. We compute the number of packets

needed to estimate the packet drop rate with a (εri , σ)
accuracy such that Pr(|r∗i − ri| > εri) < σ. In other

words, with probability at least (1 − σ) the estimated

ri ∈ (r∗i −εri , r
∗
i +εri). Then we compute the total number

of packets needed to achieve a (εri , σ) accuracy for the loss

rate estimation (i.e., ri) of every link.

We define each instance of a data packet arriving at

node ni as a random variable of li. We assume that a

node correctly embeds its provenance record whenever

it forwards a data packet. Using Maximum Likelihood

Estimation and Hoeffding’s inequality, we obtain

Pr(|r∗i − ri| > εri) ≤ 2 exp−2Niε
2
ri

=⇒ Ni =
ln( 2σ )

2ε2ri
≥ ln( 2σ )

2ε2
(7)

where εri ≤ ε.

Now we compute the number of packets needed to give

an estimate with (εri , σ)-accuracy for every link in a D-

hop path. When each packet transmitted by the source

reaches node n(D−1), it provides a trial for every link li
belonging to the path. Therefore, transmitting Ni packets

to n(D−1) also suffices to give other links enough trials,
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Fig. 6. (a) Provenance VFR vs path length. (b) VFR variation with time as network stabilizes. (c)(d)(e)(f)
Collection Error and False Positive Rate for various path lengths and BF sizes.
which requires a total of

N(D−1)
1

(1− α)
D

=
ln( 2σ )

2ε2(1− ρ− ε)
D

packets transmitted from the source. �
Under the converging condition, a link drops packets at

no more than α rate. Thus at any time, the combined rate

of packet drop induced by z malicious nodes would be at

most zα. Hence, given a path of length D, an adversary

in control of z intermediate nodes can cause an end-to-end

packet loss rate of at most zα without being detected.

7 SIMULATION RESULTS

We implemented and tested the proposed techniques using

the TinyOS simulator (TOSSIM) [24]. We have used the

micaz energy model and PowerTOSSIM z [25] plugin to

TOSSIM to measure the energy consumption. We consider

a network of 100 nodes and vary the network diameter

from 2 to 14. All results are averaged over 100 runs. First,

we look at how effective the secure provenance encoding

scheme (introduced in Section 3) is in detecting provenance

forgery and path changes. Next, we investigate the accuracy

of the proposed method for detecting packet loss (which

was presented in Section 4). Finally, we measure the energy

consumption overhead of securing provenance.

7.1 Provenance Decoding Error
Provenance decoding retrieves the provenance from the in-

packet BF and consists of verification and collection phases.

To quantify the accuracy and efficiency of our provenance

scheme, we measure the decoding error in both the above

phases, i.e., verification and collection error.

Algorithm 1 shows that the verification fails when the

provenance graph in the packet does not match the local

knowledge at the BS. This may happen when there is a

data flow path change or upon a BF modification attack.

Provenance verification failure rate (VFR) measures the

ratio of packets for which verification fails. Fig. 6(a) shows

the VFR for paths of 2 to 12 hops with various BF sizes. For

each path length, the VFR is averaged over 1000 distinct

paths. The results show that the provenance verification

process fails only for a very small fraction of packets.

Thus, for most packets the lightweight verification process

is sufficient to retrieve the provenance. The more costly

provenance collection process is executed only for a very

few packets when verification fails. As expected, VFR

increases linearly with the increase of the path length.

On the other hand, VFR is not significantly influenced by

BF size, proving that even small BF sizes provide good

protection. Fig 6(b) shows the variation of VFR over time,

as the number of packet transmissions increases. As the

network gets stable with time, the data paths do not change

often, and hence the VFR approaches 0.
Fig. 6(c) and 6(d) plot the percentage of provenance

collection error for different number of hops and the

corresponding BF false positive rates, respectively. Recall

that, the collection phase is executed when provenance

verification fails. Fig. 6(e) and 6(f) show the collection

error corresponding to various BF sizes and the related false

positives, respectively. The number of hash functions used

is determined using Eq. (5). The resulting false positive

rates vary from 0 ∼ 0.013 and it is observed that the

collection error becomes negligible when the false positive

rate drops at or below 10−4. It is also seen that a BF size

of 16 bytes is enough to ensure no decoding error for up to

8-hop paths. The empirical BF size required is much less

than the theoretical one(∼ 20 bytes for a 8-hop path).

7.2 Detection of Packet Drop Attacks
In these experiments, we consider one malicious node in

every data path considered, the natural link loss rate is set

to ρ = 0.01, the malicious link loss rate to α = 0.06,

and the maximum allowed threshold for false positives in

attack detection to σ = 0.03. The BF sizes are varied from

16 to 35 bytes (note that this is slightly larger than for
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Fig. 7. (a) Percentage of Collection Error (b) False Positive Rates of extended provenance scheme. (c) Success
rate of detecting packet drop for various malicious link loss rates. (d) Accuracy of malicious link identification over
time. (e) End-to-end packet drop rate for various percentages of malicious nodes deployed in the network.
the basic scheme, because the packet sequence information

must now be included as well in the BFs). The percentages

of provenance collection error and corresponding false pos-

itive rates for the extended provenance scheme are shown

in Fig. 7(a) and 7(b), respectively. Fig. 7(a) shows that

the provenance collection error for the extended scheme

depends on BF sizes and follows the same pattern as in

the basic scheme. As expected, the errors for the same

BF sizes are higher compared to the basic scheme, due to

the extended (doubled) element space for the received iBF

which increases the hash collisions and consequently the

error rates. With a suitably chosen BF size (e.g. 30 bytes),

collection errors can be kept low for any path lengths. Thus,

the collection error does not affect much the accuracy of the

malicious node identification process. The false positives

in the error cases, as shown in Fig. 7(b), do not have

significant changes compared to those of the basic scheme.

Fig. 7(c) illustrates the success of our provenance scheme

in detecting packet losses. The success rate, termed as Link
Loss Detection Rate, is measured as a ratio of the number

of packet losses detected to the actual packet losses. The BF

size is set to 25 bytes, one malicious node is placed in every

data path considered, and the malicious link loss rate is

varied as 0.03, 0.06, 0.1. Intuitively, the link loss detection

rate decreases with an increase of the link loss rate. When

the link loss rate increases, the probability of consecutive

packet losses by the malicious nodes also increases. Our

provenance scheme cannot distinguish between a single

packet loss and multiple consecutive packet losses and

thus counts the consecutive packet losses as a single one.

Hence, as the malicious link loss rate increases, the link

loss detection rate by our scheme degrades. However, even

though we do not achieve a 100% detection rate, the success

probability we obtain is high (75% in the worst case).

Fig. 7(d) shows the accuracy of the malicious link
identification process over time and how it leads to the

detection of packet drop attacks. The figure plots the link

loss rates over packet transmissions in order to show the

convergence of link statistics to their actual values. For an

uncompromised node, the link loss rate should converge

to the natural loss rate whereas for a malicious node the

link statistics should tend towards a significantly higher loss

rate which confirms the packet drop attack. We consider an

arbitrary 14 hop path where n3 is malicious and controls

the link l3. As earlier, we consider a natural link loss rate

ρ = 0.01 and 3 different malicious link loss rates 0.03, 0.06,

0.1. The results show that eventually the packet drop attack

is detected successfully. However, there is a probability of

errors since in the earlier stage the loss rate of malicious

links seem to be much less than the actual packet drop rate,

while the loss rate of the benign link seems high.

Fig. 7(e) presents the degradation of data throughput by

the time the attack is detected in robust settings, where 10%,

20%, and 30% of the total nodes are malicious. Drop rates

over paths are bounded by the sum of natural loss rates

of the intermediate links and malicious loss rates of any

malicious links in a considered data flow path. As expected,

the data throughput at the BS degrades with the increasing

number of malicious nodes in the data flow path.

7.3 Space Complexity and Energy Consumption
Fig. 8(a) compares SSP, MP and our provenance mecha-

nism in terms of bytes required to transmit provenance. The

provenance length in SSP and MP increases linearly with

the path length. For our scheme, we empirically determine

the BF size which ensures no decoding error. Although the

BF size increases with the expected number of elements

to be inserted, the increasing rate is not linear. We see

that even for a 14-hop path, a 30 byte BF is sufficient for

provenance decoding without any error.

We also measure the energy consumption for both the

basic provenance scheme and the extended scheme for

packet drop detection, while varying hop counts. For packet
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Fig. 8. (a) Provenance length (b) Energy consumption
drop attack, we set the malicious link loss rate as 0.03. Note

that, modern sensors use ZigBee specification for high level

communication protocols which allows upto 104 bytes as

data payload. Hence, SSP and MP can be used to embed
provenance (in data packet) for maximum 2 and 14
nodes, respectively. Figure 8(b) shows aggregate energy

consumption over 1000 packet transmissions. The results

confirm the energy efficiency of our solutions.

8 RELATED WORK

Pedigree [26] captures provenance for network packets in

the form of per packet tags that store a history of all

nodes and processes that manipulated the packet. However,

the scheme assumes a trusted environment which is not

realistic in sensor networks. ExSPAN [27] describes the

history and derivations of network state that result from

the execution of a distributed protocol. This system also

does not address security concerns and is specific to some

network use cases. SNP [28] extends network provenance

to adversarial environments. Since all of these systems are

general purpose network provenance systems, they are not

optimized for the resource constrained sensor networks.

Hasan et al. [5] propose a chain model of provenance

and ensure integrity and confidentiality through encryption,

checksum and incremental chained signature mechanism.

Syalim et al. [29] extend this method by applying digital

signatures to a DAG model of provenance. However, these

generic solutions are not aware of the sensor network

specific assumptions, constraints etc. Since provenance

tends to grow very fast, transmission of a large amount

of provenance information along with data will incur

significant bandwidth overhead, hence low efficiency and

scalability. Vijaykumar et al. [30] propose an application

specific system for near-real time provenance collection in

data streams. Nevertheless, this system traces the source of

a stream long after the process has completed. Closer to

our work, Chong et al. [31] embed the provenance of data

source within the dataset. While it reflects the importance

of issues we addressed, it is not intended as a security

mechanism, hence, does not deal with malicious attacks.

Besides, practical issues like scalability, data degradation,

etc. have not been well addressed. In our earlier work [32],

secure transmission of the provenance requires several

distinct packet transmissions. The underlying assumption

is that provenance remains the same for at least a flow of

packets. Our work relinquishes that assumption.

While BFs are commonly used in networking appli-

cations, iBFs have only recently gained more attention

being utilized in applications such as credential based data

path security [13], IP traceback [33], source routing and

multicast [34], [35] etc. The basic idea in these works is to

encode the link identifiers constituent to the packet routing

path into an iBF. However, the encoding of the whole path

is performed by the data source, whereas the intermediate

routers check their membership in the iBF and forward

the packet further based on this decision. This approach is

infeasible for sensor networks where the paths may change

due to several reasons. Moreover, an intermediate router

only checks its own membership which may leave several

integrity attacks such as all-one attack, random bit flips etc.,

undetected. Our approach resolves these issues by encoding

the provenance in a distributed fashion.

9 CONCLUSION

We addressed the problem of securely transmitting prove-

nance for sensor networks, and proposed a light-weight

provenance encoding and decoding scheme based on Bloom

filters. The scheme ensures confidentiality, integrity and

freshness of provenance. We extended the scheme to in-

corporate data-provenance binding, and to include packet

sequence information that supports detection of packet loss

attacks. Experimental and analytical evaluation results show

that the proposed scheme is effective, light-weight and

scalable. In future work, we plan to implement a real system

prototype of our secure provenance scheme, and to improve

the accuracy of packet loss detection, especially in the case

of multiple consecutive malicious sensor nodes.

Acknowledgments. This work has been partially funded

by NSF awards CNS-1111512 and CNS-0964294.

REFERENCES

[1] H. Lim, Y. Moon, and E. Bertino, “Provenance-based trustworthiness
assessment in sensor networks,” in Proc. of Data Management for
Sensor Networks, 2010, pp. 2–7.

[2] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera: A virtual
data system for representing, querying, and automating data deriva-
tion,” in Proc. of the Conf. on Scientific and Statistical Database
Management, 2002, pp. 37–46.

[3] K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proc. of the USENIX Annual
Technical Conf., 2006, pp. 4–4.

[4] Y. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” SIGMOD Record, vol. 34, pp. 31–36, 2005.

[5] R. Hasan, R. Sion, and M. Winslett, “The case of the fake picasso:
Preventing history forgery with secure provenance,” in Proc. of
FAST, 2009, pp. 1–14.

[6] S. Madden, J. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny
aggregation service for ad-hoc sensor networks,” SIGOPS Operating
Systems Review, no. SI, Dec. 2002.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[7] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An efficient cluster-
ing based heuristic for data gathering and aggregation in sensor
networks,” in Proc. of Wireless Communications and Networking
Conference, 2003, pp. 1948–1953.

[8] S. Sultana, E. Bertino, and M. Shehab, “A provenance based mech-
anism to identify malicious packet dropping adversaries in sensor
networks,” in Proc. of ICDCS Workshops, 2011, pp. 332–338.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[10] A. Kirsch and M. Mitzenmacher, “Distance-sensitive bloom filters,”
in Proc. of the Workshop on Algorithm Engineering and Experiments,
2006, pp. 41–50.

[11] C. Rothenberg, C. Macapuna, M. Magalhaes, F. Verdi, and A. Wies-
maier, “In-packet bloom filters: Design and networking applications,”
Computer Networks, vol. 55, no. 6, pp. 1364 – 1378, 2011.

[12] M. Garofalakis, J. Hellerstein, and P. Maniatis, “Proof sketches:
Verifiable in-netwok aggregation,” in ICDE, 2007, pp. 84–89.

[13] T. Wolf, “Data path credentials for high-performance capabilities-
based networks.” in Proc. of ACM/IEEE Symp. on Architectures for
Networking and Communications Systems., 2008, pp. 129–130.

[14] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in Proc. of the conf. on Computer
and communications security (CCS), 2006, pp. 278–287.

[15] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Secure data aggregation
in wireless sensor networks,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 3, pp. 1040–1052, 2012.

[16] C. Karlof and D. Wagner, “Secure routing in wireless sensor net-
works: attacks and countermeasures,” in Proc. of Intl. Workshop on
Sensor Network Protocols and Applications, 2003, pp. 113–127.

[17] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in Proc. of the Intl. Conf.
on Mobile Computing and Networking, 2000, pp. 255–265.

[18] S. Papadopoulos, A. Kiayias, and D. Papadias, “Secure and efficient
in-network processing of exact sum queries,” in Proc. of Interna-
tional Conference on Data Engineering, 2011, pp. 517–528.

[19] A. Liu and P. Ning, “TinyECC: A configurable library for elliptic
curve cryptography in wireless sensor networks,” in Proc. of IPSN,
2008, pp. 245–256.

[20] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security
architecture for wireless sensor networks,” in Proc. of the Intl. Conf.
on Embedded networked sensor systems, 2004, pp. 162–175.

[21] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, pp. 422–426, 1970.

[22] M. Mitzenmacher, “Compressed bloom filters,” in Proc. of ACM
Symp. on Principles of Distributed Computing, 2001, pp. 144–150.

[23] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering
of injected false data in sensor networks,” in Proc. of INFOCOM,
2004, pp. 839–850.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire tinyos applications,” in Proc. of the Intl.
Conf. on Embedded networked sensor systems, 2003, pp. 126–137.
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