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Abstract—Many application domains, such as real-time financial analysis, e-healthcare systems, sensor networks, are characterized

by continuous data streaming from multiple sources and through intermediate processing by multiple aggregators. Keeping track of

data provenance in such highly dynamic context is an important requirement, since data provenance is a key factor in assessing data

trustworthiness which is crucial for many applications. Provenance management for streaming data requires addressing several

challenges, including the assurance of high processing throughput, low bandwidth consumption, storage efficiency and secure

transmission. In this paper, we propose a novel approach to securely transmit provenance for streaming data (focusing on sensor

network) by embedding provenance into the interpacket timing domain while addressing the above mentioned issues. As provenance

is hidden in another host-medium, our solution can be conceptualized as watermarking technique. However, unlike traditional

watermarking approaches, we embed provenance over the interpacket delays (IPDs) rather than in the sensor data themselves, hence

avoiding the problem of data degradation due to watermarking. Provenance is extracted by the data receiver utilizing an optimal

threshold-based mechanism which minimizes the probability of provenance decoding errors. The resiliency of the scheme against

outside and inside attackers is established through an extensive security analysis. Experiments show that our technique can recover

provenance up to a certain level against perturbations to inter-packet timing characteristics.

Index Terms—Data stream, sensor network, secure provenance, watermarking, transmission

Ç

1 INTRODUCTION

THE proliferation of the Internet, embedded systems, and
sensor networks has greatly contributed to the wide

development of streaming applications. Examples include
real-time financial analysis, location-based services, trans-
action logs, sensor networks, control of automated systems.
The data that drives such systems is produced by a variety
of sources, ranging from other systems down to individual
sensors and processed by multiple intermediate agents.
This diversity of data sources accelerates the importance of
data provenance to ensure secure and predictable operation
of the streaming applications. Data provenance is consid-
ered as an effective tool for evaluating data trustworthiness,
since it summarizes the history of the ownership and the
actions performed on the data. Recent research works on
the provenance-based evaluation of the trustworthiness of
sensor data [18], location data [8], and multihop network
[29] manifest the key contribution of provenance in data
streams. As an example consider a battlefield surveillance
system that gathers enemy locations from various sensors
deployed in vehicles, air-crafts, satellites, etc., and manages

queries over these data. Mission critical applications in such
a system must access only high confidence data in order to
guarantee accurate decisions. Thus, the assurance of data
trustworthiness is crucial here, which prioritizes the secure
management of provenance. Likewise, provenance plays a
key role in process control tasks (i.e., SCADA systems) that
analyze the real-time data collected from different sensors.
Provenance facilitates such systems by leveraging high
trustworthy data, thus, preventing wrong control decisions.
The significance of provenance for streaming data is also
emphasized in the Research and Development Challenges for
National Cyber Security report [3] which recommends
research initiatives on efficient and secure implementation
of provenance for real-time systems.

Past research on provenance mainly focused on model-
ing, collecting, and querying, leaving security unexplored.
Moreover, although the provenance of workflows and
curated databases [11], [ 20] has been investigated exten-
sively, very few approaches have been reported for data
streams. In this paper, we introduce and study the problem
of secure and efficient transmission of provenance in an
aggregation supportive streaming environment (focusing on
sensor networks). The unique nature of streaming environ-
ment imposes a set of challenges to the provenance solution.

. It must conform with the fast arriving data nature and
high processing throughput of the infrastructure.
Hence, the solution cannot introduce significant
processing overhead to individual data element.

. Provenance, even of increasing size, should be
efficiently managed and transmitted so to minimize
the additional bandwidth consumption.

. The provenance management system must transmit
provenance in a secure manner as well as quickly react
to malicious attacks.
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While past research has focused on the management of
streaming and provenance data through separate channels
[25] as well as on how to trace the source of the stream long
after the process has been completed [27], our solution is the
first that addresses all of the challenges mentioned above.
We propose a framework that transmits provenance along
with the sensor data by hiding it over the interpacket delays
(IPDs) (i.e., the delay between sensor data packets). The
provenance of a data packet includes the identities of nodes
in the data flow path. The provenance transmission requires
a number of data packets (i.e., the associated IPDs). Each
node in the path encodes one bit of provenance information
over each IPD. Hence, the provenance can be decoded by
processing the IPDs required to encode all the provenance
bits. The embedding of provenance within a host medium
makes our technique reminiscent of watermarking [7].
However, since the interpacket delays are used as watermark
carrier, there is no data degradation due to watermarking.
Scalability is another concern as the size of provenance
increases proportionally to the number of participating
nodes. We address this issue by adopting a spread spectrum
based technique which supports multiuser communication
over the same medium [9]. Hence, our proposed framework
provides scalability, imperceptibility and robustness to
attacks. The contributions of this paper include:

. introducing the problem of secure provenance
transmission for streaming data;

. design of a watermark based approach for embed-
ding provenance in the inter-packet timing domain;

. an efficient technique for provenance retrieval based
on an optimal threshold;

. a security analysis of our scheme; and

. an experimental evaluation using synthetic data that
reflects the timing characteristics of real-world data.

Why not traditional security mechanisms?: A possible
approach to the problem of secure provenance for streaming
could be based on traditional security solutions like
encryption, digital signature, and message authentication
code (MAC). In a digital signature (or MAC)-based
mechanism, each party involved in the data processing
would append its information to data and sign it (or
compute and attach the MAC) to ensure authenticity. In
addition, encryption and an incremental chained signature
based approach for secure document provenance [12] could
be adapted for use in sensor networks. However, such
approaches are not applicable in resource constrained
sensor networks, because provenance information tends to
grow very fast, often becoming several magnitudes in size
larger than the original data [12]. Such a characteristic thus
would force the transmission of a vast amount of prove-
nance information along with data. Encryption/signature/
MAC-based mechanisms cannot help in reducing such size
even after compaction. Hence, traditional security means
incur significant bandwidth overhead and impact efficiency
and scalability. On the contrary, watermarking allows one to
embed provenance within the data itself; hence it makes
efficient usage of bandwidth. Moreover, watermarking
reduces power and processing requirements.

Another reason that could motivate the adoption of
existing security mechanisms is that in our context each

data source typically generates a lot of packets; thus there
are large groups of packets that have the same provenance.
In this context, the expensive encryption/MAC/digital
signature mechanisms can be used with low frequency to
send provenance in some selected packets. However, such
an approach has the drawback that the attackers would be
able to identify the provenance containing packets by
observing and analyzing all the data packets. Upon
detection, the attacker could then drop such packets and
block the provenance transmission. Even if such attacks
could be detected, there would be no way to recover the
destroyed provenance. On the other hand, a careful design
of the watermarking scheme can make the provenance
invisible to the attacker, which enhances the reliability and
robustness of the provenance. Moreover, our scheme is able
to recover the provenance even in the face of several attacks.

The rest of the paper is organized as follows. Section 2
introduces the system model and preliminaries. The
proposed scheme for encoding and decoding provenance
is summarized in Section 3. Sections 4, 5, and 6 explain the
algorithms associated with the different stages of prove-
nance embedding. Sections 7 and 8 discuss the decoding
threshold evaluation, and the provenance retrieval scheme,
respectively. Section 9 analyzes the security of our scheme.
The experimental results are presented in Section 10.
Section 12 discusses related work and Section 13 concludes
the paper.

2 SYSTEM MODEL AND BACKGROUND

2.1 Network Model

We consider a typical deployment of wireless sensor
networks, consisting of a large number of nodes. Sensor
nodes are stationary after deployment, though the routing
paths may change due to node failure, resource optimiza-
tion, etc. The network is modeled as a graph G (N,E) where

. N ¼ fni : ni is a network node with identifier ig: a
set of network nodes;

. E ¼ fei;j : ei;j is an edge connecting nodes ni and
njg: the set of edges between the nodes in N .

There exists a base station (BS) that acts as sink/root and
connects the network to outside infrastructures such as the
Internet. All nodes form a tree rooted at the BS and report
the tree topology to BS once after the deployment or
whenever a change in the topology occurs. Since the
network does not change frequently, such a communication
will not incur significant overhead. The network is
organized into a cluster structure [13]. Sensory data from
the children nodes are aggregated at the cluster-head a.k.a.
aggregator, and routed to the applications through the
routing tree rooted at the BS.

The BS cannot be compromised and it has a secure
mechanism (e.g., �TESLA [23]) to broadcast authentic
messages in the network. A low-level communication
protocol will ensure reliable and in order message delivery.
Each sensor node shares a secret key Ki with the BS and is
assigned a unique pseudonoise (PN) sequence, denoted as
pni ¼ pni½1� pni½2� � � � pni½Lp�, where Lp, an integer greater
than 0, is the length of the PN sequence.
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2.2 Data Model

The sensor network supports multiple distinguishable data
flows where source nodes generate data periodically. A
node may also receive data from other nodes in order to
forward them towards the BS. For the rest of the paper, we
will use the term data arrival with the meaning of data
generation or receipt at a node. While transmitting, a node
may send the sensed data or pass an aggregated data value
computed from multiple sensors’ readings, or act as a
routing node. Each data packet contains an attribute value
and provenance for this attribute. The packet is also
timestamped by the source node with the generation time.
As we see later, the packet timestamp is crucial for
provenance embedding and decoding processes. Hence
we use a message authentication code to maintain its
integrity and authenticity.

However in case of aggregation, the cluster head creates a
new packet with aggregated data which makes it difficult to
preserve the packet timestamps received from all of its
children. Hence, we assume that at the beginning of each
aggregation round, all of the cluster nodes synchronize their
time and agree upon a timestamp to associate with their
data packets for that round. Then the cluster head creates a
new packet with the aggregated data and authenticated
timestamp from one of its children. Since time synchroniza-
tion is performed in sensor networks for various purposes
[10], it will not add extra overhead to our protocol.

2.3 Data Provenance

The notion of data provenance is well established in many
scientific domains; however, the definition of provenance
varies depending on the specific application domain [21]. In
the context of sensor networks, we use the definition of data
provenance as information about the source node and the
nodes that processed/forwarded the data throughout its
transmission towards the BS [18]. Provenance is formally
defined as:

Definition. The provenance pd for a data item d is a rooted tree
satisfying the properties: 1) pd is a subgraph of the sensor
network G(N,E); 2) the root node of pd is the BS; 3) for any
ni; nj 2 pd, ni is a child of nj if and only if ni participated in
the processing of d and/or passed data information to nj.

Fig. 1 shows two different kinds of provenance. In Fig. 1a,
data item d is generated at leaf node nl1 and the internal
nodes simply pass it to BS. We call such internal nodes

simple nodes and this kind of provenance simple provenance.
The simple provenance can be represented as a path. In
Fig. 1b, the aggregator n1 generates data item d by
aggregating data d1; . . . ; d4 from nl1 ; . . . ; nl4 and passes d
toward BS. Here, the provenance is called aggregate
provenance and represented as a tree.

We propose a distributed strategy to securely embed
provenance as a set of nodes over the interpacket delays. In
our scheme, the unique PN sequence is used as the

identity of a node and thus encoded in the provenance.
Upon extracting the list of nodes, the BS can easily
determine their order with the knowledge of network
topology and construct the provenance tree.

2.4 Adversary Model

We assume that the source and the destination node
(i.e., the BS) on the path being monitored are honest. Any
other arbitrary node may be malicious. An adversary can
eavesdrop and perform traffic analysis anywhere on the
path. Beyond that, the adversary is able to deploy a few
malicious nodes as well as compromise few legitimate
nodes by capturing them and physically overwriting their
memory. Thus, the attacker might have control of more than
one node, and these malicious nodes might collude to attack
the system. If an adversary compromises a node, (she)he
can extract all key materials, data, and codes stored on that
node. The adversary may drop, or inject packets on the links
that are under its control.

From the perspective of network access capabilities, the
described adversaries can be typed into two categories:
outside and inside attackers. The outside attacker is an
external entity which cannot access any secret of the
legitimate nodes but can eavesdrop, inject or replay data.
The inside attacker is actually a legitimate node which is
compromised and attacks the network by running mal-
icious code or exploiting the stolen secrets and data.

The goal of an attacker is to make undetected changes to
the provenance to carry out mischievous activities, such as
to make an innocuous node untrustworthy by making it
responsible for false data, and so on. We do not consider
denial of service attacks such as the complete removal of
provenance, since a data packet with no provenance record
at all will make the data highly suspicious [12] and hence
generate an alarm at the BS. Instead, the primary concern is
that an attacker might want to modify the provenance by
perturbing interpacket timings. Hence, our objective is to
achieve the following security properties:

Confidentiality. An adversary can observe the time
between consecutive packet transmissions among neighbor-
ing nodes and get the IPDs of a particular data flow at
associated nodes. By using the captured IPDs, an attacker
must not be able to access or retrieve the provenance
information of legitimate nodes. Thus, we aim to provide
the following confidentiality assurances:

. P1: If an attacker does not know that provenance is
being embedded over the IPDs, it cannot detect the
presence of provenance by observing the data flow
timing characteristics. Even if the attacker is aware
of provenance embedding, it cannot retrieve the
provenance consisting of legitimate nodes.
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. P2: Only authorized parties (e.g., the BS) can access
and check the integrity of the provenance.

Integrity. An inside attacker may try to modify/destroy
the provenance of data packets passed through it. A naive
attack is to change the interpacket timings randomly to
make the provenance worthless. More intelligent attempts
include adding legitimate nodes to the provenance of fake
data, adding compromised nodes to or removing legitimate
nodes from valid provenance.

. P3: An adversary, acting alone or colluding with
others, cannot successfully add legitimate nodes to
the provenance of fake data.

. P4: An attacker (or a set of colluding attackers)
cannot undetectably add or remove nodes from the
provenance of data generated by benign nodes.

In addition, we want to prevent provenance forgery attack
and to ensure the freshness of provenance.

. P5: (Unforgeability) An adversary cannot claim that
a valid provenance for a data packet belongs to a
different data packet.

. P6: (Freshness) An adversary cannot replay captured
provenance, avoiding detection at the BS.

However, an adversary may increase network jitter in a way
that the recorded IPD at the BS is much larger than the
desired value. Such an attack is intended to destroy the
embedded provenance. As we discuss later, our scheme can
recover provenance if the IPD is altered within a certain
limit. In any case, the BS can detect such malicious activity
and may utilize some auxiliary mechanism to identify the
attacker and take necessary actions. Moreover, the attacker
can inject or drop data packets which also alters the IPDs
and interfere with the embedded provenance. We success-
fully recover provenance against the insertion attack but
survive the deletion attack to a certain extent.

2.5 Digital Watermarking

The key idea of digital watermarking is to hide a secret
information (watermark) related to a digital content within
the content itself thereby ensuring the movement of the
watermark along with the content. Thus, digital water-
marking involves the selection of a watermark carrier
domain and the design of two complementary processes.

1. An embedding process E that utilizes the watermark
carrier A, the watermark message w, and, possibly, a
key K to generate the watermarked data AW as
EðA;w;KÞ ¼ AW

2. A detector process that determines the existence of a
watermark within the received signal (with the key,
if applicable) and extracts it.

Though our proposed scheme resembles a watermarking
technique, the detection process in our scheme is more
powerful since it can extract individual node identities from
the aggregated data watermarked in time domain.

2.6 Spread Spectrum Watermarking

Spread spectrum is a transmission technique by which a
narrowband data signal is spread over a much larger

bandwidth so that the signal energy present in any single

frequency is undetectable [9]. In our context, the sequence of

interpacket delays is the communication channel and the

provenance is the signal transmitted through it. Provenance

is spread over many IPDs such that the information present

in one IPD (i.e., container of information) is small.

Consequently, an attacker needs to add high amplitude

noise to all of the containers in order to destroy the

provenance. Thus, the use of the spread spectrum technique

for watermarking provides strong security against different

attacks. We have adopted the direct sequence spread spectrum

(DSSS) technique which is widely used for enabling multi-

ple users to transmit simultaneously on the same frequency

range by utilizing distinct pseudonoise sequences [9]. The

intended receiver can extract the desired user’s signal by

regarding the other signals as noise-like interferences. The

components of a DSSS system are as follows:
Input:

. The original data signal dðtÞ, as a series of þ1;�1.

. A PN sequence pxðtÞ, encoded like the data signal.
Nc is the number of bits per symbol and is called PN
length.

Spreading. The transmitter multiplies the data with the

PN code to produce spreaded signal as sðtÞ ¼ dðtÞpxðtÞ
Despreading. The received signal rðtÞ is a combination of

the transmitted signal and noise in the communication

channel. Thus rðtÞ ¼ sðtÞ þ nðtÞ, where nðtÞ is a white

Gaussian noise. To retrieve the original signal, the correlation

between rðtÞ and the PN sequence prðtÞ at the receiver is

computed as Rð�Þ ¼ 1
Nc

PTþNc

t¼T rðtÞ prðtþ �Þ. If pxðtÞ ¼ prðtÞ
and � ¼ 0, i.e., pxðtÞ is synchronized with prðtÞ, then the

original signal can be retrieved. Otherwise, the data signal

cannot be recovered. So, a receiver without having the PN

sequence of the transmitter cannot reproduce the originally

transmitted data. This fact is the basis for allowing multiple

transmitters to share a channel. In this paper, we refer toRð0Þ
as cross correlation.

In case of multiuser communication in DSSS, spreaded

signals produced by multiple users are added and

transmitted over the channel. To retrieve the signal for

jth user, the cross-correlation between rðtÞ and pxjðtÞ is

computed. Multi-user communication introduces noise to

the signal of interest and interfere with the desired signal in

proportion to the number of users. The condition for error

free communication in DSSS can be derived from Shannon’s

channel-capacity theorem

C ¼ B log2 1þ S

N

� �
;

where C is the amount of information allowed by the

communication channel, B is the channel bandwidth, and

S/N is the signal-to-noise ratio. As S/N is usually �1 for

spread-spectrum applications, the expression becomes

C

B
� S

N
:
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Thus to propagate error-free information for a given noise-
to-signal ratio in the channel, the bandwidth should be
increased to an appropriate level.

3 OVERVIEW OF OUR APPROACH

We propose a distributed approach to watermark prove-
nance over the delay between consecutive data packets.
Provenance of a data packet includes the nodes in the data
flow path. The PN sequence (of Lp bits) of a node is used to
uniquely represent its identity in the provenance. Due to the
adoption of DSSS based watermarking, all nodes in the
provenance use the same medium for transmitting their PN
sequences. Hence, only Lp bits of digital information are
required for watermarking the provenance. Since we utilize
the IPDs, Lp IPDs (in other words, a sequence of Lp þ 1
packets) are required for embedding and transmitting the
provenance of a data packet. We assume that, at least for such
number of packets, the provenance (i.e., data flow path) of
the packets generated by a source node would be the same.
The assumption is reasonable since a routing path does not
change too often. Once the path is constructed, it is stable for
a good amount of time until there is any link or node failure.

After generating a data packet, the source node marks it
with the generation time and ensures the integrity of the
timestamp with a MAC. The MAC is computed using the
node specific secret key Ki. The next Lp data packets
generated by the node, more specifically, the sequence of
Lp IPDs is the medium where we hide the provenance of
the packets. We denote the set of IPDs by DS ¼ f �½1� ;
�½2�; . . . ;�½Lp� g, where �½j� represents the IPD between
jth and ðjþ 1Þth data packet. The data source encodes a bit
of its PN sequence over each IPD. Throughout the
transmission of a packet towards the BS, each intermediate
node also encodes 1-bit of provenance information over
the associated IPD. Hence, an IPD recorded at the BS
carries the sum of 1-bit information from each node in the
path. The process also uses the secret Ki and a locally
generated random number �i (known as impact factor).
The BS only knows the distribution of the �i’s.

Fig. 2 presents an overview of our approach for
provenance encoding at a sensor node in the data path
and decoding at the BS. The process a node ni follows to
encode a bit of PN sequence over an IPD is summarized
below:

. Step E1 (Generation of Delay Perturbations). ni
generates a set of delay perturbations by using the
PN sequence pni and impact factor �i. The set is
represented by Vi ¼ fvi½1�; vi½2�; . . . ; vi½Lp�g, where
each element vi½j� is a real number. Note that, vi½j�
corresponds to the provenance bit pni½j�. However,
the node may perform the computation offline since
it is independent of any packet specific information.

. Step E2 (Selection of a Delay Perturbation). On the
arrival of any (j+1)th data packet, ni records the IPD
�½j� and assigns a delay perturbation vi½kj� 2 V to it.
To ensure the robustness of the scheme, the delay
perturbations are not assigned sequentially to the
IPDs, i.e., vi½j� is not assigned to �½j�. Instead, a delay
perturbation vi½kj� is selected using the secret Ki and
the packet timestamp.

. Step E3 (Provenance Embedding). In this step, ni
delays the packet transmission by vi½kj� time unit. As
vi½kj� corresponds to the provenance bit pni½kj�,
through this step a provenance bit is embedded
over an IPD. This notion makes our scheme
reminiscent of watermarking.

By following the above procedure, each node in the flow
path encodes its 1-bit information. Consequently, the
provenance bits are watermarked over the Lp IPDs by
manipulating them with corresponding delay perturba-
tions, termed as watermark delay. This way, DS is trans-
formed into the watermarked version DSw. However, data
packets may also experience different propagation delays or
attacks aimed at destroying the provenance information. At
the end, the BS receives the data set along with water-
marked IPDs DSw, which can be interpreted as the sum of
delays imposed by the intermediate nodes, the attackers,
and the difference between consecutive propagation delays
along the data path. Thus, DSw represents the DSSS
encoded signal in our context. The provenance retrieval
process at the BS approximates the provenance from this
DSSS signal based on an optimal threshold T �. The
threshold, corresponding to the network diameter and PN
length, is calculated once after the deployment of the
network. For retrieval purposes, the BS also requires the
secret keys fK1; . . . ; Kng and PN sequences fpn1; . . . ;pnng.
The retrieval process follows two steps:

. Step R1 (Reordering the IPDs). The IPDs for
incoming packets are recorded at the BS. For each
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Fig. 2. Stages of provenance encoding at a sensor node and decoding at the base station.



node, the IPDs are reordered according to the
algorithm used in E2, which produces a node
specific permutation of the IPDs. We denote this
sequence as CSi.

. Step R2 (Threshold-Based Decoding). For any node
ni, the BS computes the cross-correlation between
CSi and the PN sequence pni. If the correlation
result exceeds the threshold T �, the BS decides that
pni was embedded as a part of the provenance.

As the BS does not know which nodes participated in the
data flow, it performs the Bit selection and Threshold
Comparison for all nodes. Based on the threshold compar-
ison result, it identifies the nodes in a data flow. In next
sections, we discuss these steps in detail.

4 GENERATION OF DELAY PERTURBATIONS

As the first step to embed provenance, a node ni generates a
delay sequence that is used for watermarking. The PN
sequence pni and impact factor �i are used for this purpose.
The PN sequence, consisting of a sequence of þ1 and �1’s,
is characterized by a zero mean. The zero mean property is
required to ensure successful information decoding at the
BS in the context of DSSS-supported multiuser communica-
tion. �i is a random (real) number generated according to a
normal distribution Nð�; �Þ. � and � are predetermined and
known to the BS and all the nodes. Thus, the BS only knows
the distribution of �i’s, but not their exact values. However,
ni generates the set of delay perturbations Vi as a sequence
of real numbers as follows:

Vi ¼ �i � pni

¼ �i � fpni½1�; pni½2�; . . . ; pni½Lp�g
¼ fð�i � pni½1�Þ; . . . ; ð�i � pni½Lp�Þg
¼ fvi½1�; vi½2�; . . . ; vi½Lp�g:

5 SELECTION OF A DELAY PERTURBATION

In this section, we present the algorithm that a node applies
to select the delay perturbation (from Vi) corresponding to
an IPD. If we sequentially assign the delays to the IPDs
(which implies that the provenance bits are embedded
sequentially), it will be much easier for the attackers to infer
information about the provenance or to corrupt the
provenance. Hence, we randomize the embedding positions
using a different permutation of the elements in Vi. On the
arrival of any ðjþ 1Þth data packet, the jth IPD �½j� is
considered for watermarking and the information to
watermark is picked out from Vi using a selection
algorithm. Thus, instead of watermarking vi½j� over the
IPD �½j�, we select a delay vi½kj� for this purpose, where kj is
an index within ½0; Lp � 1�. The algorithm uses the secret Ki

and the packet timestamp, and selects a delay perturbation
for the IPD according to the following formula:

selectionð�½j�Þ ¼ Hðts½jþ 1� k KiÞ mod Lp:

Here, H is a lightweight, secure hash function, k is the
concatenation operator, and ts½jþ 1� represents the packet
timestamp. Since secure hash functions generate uniformly
distributed message digests, each execution of the selection

mechanism will result in a unique integer in the range
½0; Lp � 1�. The resulting integer can be used to index a
distinct element in Vi.

As part of the provenance encoding process, each node
executes the algorithm once for each of the Lp IPDs returning
a set of indices as the permutation of integers from 0 to
Lp � 1. The indices are used to point the elements in Vi. Thus,
the order according to which each node embeds the delays
from Vi over the IPDs forms a permutation of the elements
different from the sequential order. This sequence is denoted
as Si ¼ fsi½1�; si½2�; . . . si½Lp�g ¼ fvi½k1�; vi½k2�; . . . ; vi½kLp �g.
Note that, given an IPD, the algorithm will select differently
indexed delays for different nodes based on the keyKi. Thus,
an attacker cannot predict the IPD-to-Delay Perturbation
assignment without the knowledge of secrets Ki and Lp.
Keeping the provenance length secret is not a requirement
but keeping it secret makes it harder for an attacker to
regenerate the selections.

6 PROVENANCE EMBEDDING

In this section, we present the provenance embedding
algorithm into two steps:

6.1 Simple Provenance Embedding

As shown in Fig. 1a, the simple provenance is represented
as a simple path. Each node in the path watermarks its PN
sequence over a set of Lp IPDs, i.e., ðLp þ 1Þ packets are
utilized. Intuitively, the first packet in a data flow does not
experience any delay due to provenance embedding. For
any other ðjþ 1Þth data packet (sent/forwarded), each node
in the path hides a provenance bit over the associated IPD
�½j�. Interchangeably, a node ni uses the IPD �½j� to
accommodate a delay perturbation vi½kj�ð¼ si½j�Þ. Using
si½j�, the delay to be added to �½j� is computed as

�i½j� ¼ si½j� � T;

where T is the value of a time unit. If si½j� > 0, the
resulting �i½j� > 0 and then we can perform watermarking
by simply adding �i½j� to �½j�. But if si½j� < 0, the delay to
be added to an IPD is negative. To avoid this situation, we
introduce a constant offset when calculating �i½j�, which
ensures that �i½j� is always positive. The offset may be any
constant leading to �i½j� > 0. We use ð� þ const � �Þ in our
scheme, where const is any constant that makes �i½j�
greater than 0, i.e.,

const >
�ðsi½j� þ �Þ

�
:

Thus, the final equation is

�i½j� ¼ ðsi½j� þ ð� þ const � �ÞÞ � T; ð1Þ

ni then performs watermarking by adding �i½j� to �½j�,
i.e., delaying the packet transmission by �i½j� time. Thus, ni
formulates the watermarked IPD �w½j� and transmission
time of the (j+1)th packet t0i½jþ 1� as follows:

�w½j� ¼ �½j� þ �i½j�;
t0i½jþ 1� ¼ ti½jþ 1� þ �i½j� þ c:

where c is a constant > 0 corresponding to the delay added
by a sensor node, including processing and any other delay.
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After watermarking, ni sends the (jþ 1)th packet towards

the BS at instant t0i½jþ 1�. Throughout the transmission, all

other nodes in the provenance embed one bit of provenance

information over the IPD following the same procedure.

6.2 Aggregate Provenance Embedding

Fig. 1b shows the aggregate provenance, represented as a

tree. Assume that in an aggregate provenance tree, na is the

aggregator possessing U children nl1 ; nl2 ; . . . ; nlU . At any

ðjþ 1Þth sensing interval ð1 	 j 	 LpÞ, the child nodes send

data to na embedding their provenance information over

the locally managed IPDs. Watermark delays of the

children are denoted by �l1 ½j�; . . . ; �lU ½j�, respectively. na
computes the aggregated data, attaches authenticated

timestamp from one of its children, and also maintains

the corresponding IPD in such a way that this delay

represents the provenance embedding for the aggregator

and its children. Intuitively, we could accomplish this by

adding a delay of

�A½j� ¼
XU
i¼1

�li ½j� þ �a½j�

to the unwatermarked IPD, where �a½j� represents the

watermark delay computed by the aggregator. The �li ½j�’s
can be approximated by the aggregator from the IPD

observations while data is being received from the corre-

sponding child. However, this scheme would impose a major

delay to the aggregated data which would abruptly reduce

data throughput. To address this problem, we propose a

different solution based on some mathematical tricks.
Let the watermark delays for a child node nli average to

�li . Utilizing the �li ’s of child nodes, na computes the

watermark delay (denoted as �A½j�) for aggregated prove-

nance as follows:

�A½j� ¼ �a½j� þ
X
i

ð�li ½j� � �liÞ: ð2Þ

�A½j� in (2) may also be negative. So, we also add the

constant offset to make �A½j� always positive. The reason

why this solution works is explained in Section 8.

7 DECODING THRESHOLD EVALUATION

This section presents the evaluation of an optimal threshold

T � that minimizes the probability of decoding error which is

defined as the probability of retrieving provenance incor-

rectly. Let Perr, P1, and P0 represent the probability of

decoding error, probability that a node embeds its identity

(i.e., PN sequence) in the provenance and probability of not

embedding, respectively. Variables pe and pr denote the

probability of embedding and retrieval of a node’s PN

sequence, respectively (pe ¼ 1 implies that the PN sequence

of a node was embedded, pr ¼ 1 implies the PN sequence

was retrieved). fðrÞ is the probability density function of

cross correlation. Perr is calculated as

Perr ¼ P ðpr ¼ 0; pe ¼ 1Þ þ P ðpr ¼ 1; pe ¼ 0Þ
¼ P ðpr ¼ 0jpe ¼ 1ÞP1 þ P ðpr ¼ 1jpe ¼ 0ÞP0

¼ P ðr < T jpe ¼ 1ÞP1 þ P ðr > T jpe ¼ 0ÞP0

¼ P1

Z T

�1
fðrjpe ¼ 1Þdrþ P0

Z 1
T

fðrjpe ¼ 0Þdr:

To minimize the probability of decoding errors ðPerrÞ, we
take the first order derivative of Perr with respect to T to
locate the optimal threshold T � as follows:

@Perr
@T

¼ P1
@

@T

Z T

�1
fðrjpe ¼ 1Þdrþ P0

@

@T

Z 1
T

fðrjpe ¼ 0Þdr

¼ P1fðT jpe ¼ 1Þ � P0fðT jpe ¼ 0Þ:
ð3Þ

The distributions fðrjpe ¼ 0Þ and fðrjpe ¼ 1Þ are estimated
from the statistics of sets R0e and Re, respectively. The
experimental observations of cross correlation for the nodes
present in the provenance are stored in a set Re and for
those that are not present are stored in R0e. The values of R0e
and Re show that the distributions fðrjpe ¼ 0Þ and fðrjpe ¼
1Þ can be estimated as Gaussian distributions Nð�0; �0Þ and
Nð�1; �1Þ respectively. However, the following analysis can
still be performed with other types of distributions. P0

could be estimated by

jRej
jRej þ jRe0 j

and P1 ¼ 1� P0. Substituting the Gaussian expressions for
fðrjpe ¼ 0Þ and fðrjpe ¼ 1Þ in (3) and equating it to zero we
get the following quadratic equation:

�2
0 � �2

1

2�2
0�

2
1

T �2 þ �0�
2
1 � �1�

2
0

�2
0�

2
1

T � þ ln
�
P0�1

P1�0

�

þ �
2
1�

2
0 � �2

0�
2
1

2�2
0�

2
1

¼ 0:

The roots of this equation give the optimal threshold T � that
minimizes Perr. The second order derivative of Perr is
evaluated at T � to ensure that the second order necessary
condition ð@

2PerrðT �Þ
@T 2 > 0Þ is met. To show the high dependence

of the probability of decoding errors on the choice of
decoding threshold T �, we conducted experiments with a
sensor network of diameter 12 and PN Length = 240 bits. The
histograms and the Gaussian estimates of Re and R0e
obtained from the experiment are reported in Fig. 3a. The
optimal computed threshold T � is indicated by the dotted
vertical line. As we can see from Fig. 3a, the two distributions
are far apart which is a direct result of using the competing
objects for bi equal to 1 and 0. Fig. 3b shows the probability of
decoding error for different values of the threshold, which in
turn shows the presence of an optimal threshold that
minimizes the probability of decoding error.

8 PROVENANCE RETRIEVAL

The provenance retrieval algorithm recovers provenance
using the secret parameters including the keys fK1; K2; . . . ;
Kng, the PN length Lp, and the optimal threshold T �. The BS
records the watermarked IPDs and executes the retrieval
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process whenever it collects a number of Lp IPDs denoted by

the set DSw. Since the BS does not know which nodes

embedded their identities in the provenance, it executes the

process for all of the nodes in the network and tries to identify

the desired nodes. For each node, the BS generates a node

specific sequence of real numbers by reordering the IPDs in

DSw according to the bit selection algorithm. We denote such

a sequence by CSi ¼ fcsi½1�; csi½2�; . . . ; cs½Lp�g. Any element
(i.e., IPD) in this sequence can be interpreted as the sum of

delays added by the nodes in provenance, the difference of

propagation delay between two consecutive data packets,

and possibly any delay added due to malicious attacks. Thus,

csi½j� ¼
X
k;m

�k½m� þ
X
k;m

�trðk ; kþ1Þ½m� þD½m�;

where �trk ; kþ1 is the difference between the propagation

delays of two consecutive data packets from kth inter-
mediate node to ðkþ 1Þth node and D½m� is any delay

added due to attacks. We can expand the equation as

csi½j� ¼
X
k;m

sk½m� � T þ
X
k

ð� þ const � �Þ � T

þ
X
k

�trðk ; kþ1Þ½m� þD½m�:

As ð� þ const � �Þ � T is a constant, the sum over this

constant can be denoted as another constant Tc. To

determine whether a node contributes to a data flow, the

cross correlation between CSi and provenance information

pni is computed as follows:

Ri ¼ CSi : pni ¼
X
j

csi½j� � pni½j�

¼
X
j

X
k;m

ðsk½m� � T Þ � pni½j� þ
X
j

Tc� pni½j�

þ
X
j

X
k;m

�trðk ; kþ1Þ½m� � pni½j� þ
X
j

D½m� � pni½j�:

As pni has an equal number of 1’s and �1’s,
P

j pni½j�
becomes 0 resulting in

P
j Tc� pni½j� ¼ 0. Due to this

special property of pni, any constant delay added during

watermarking will contribute a 0 to the cross correlation.

For the same reason, adding a delay of ð�li ½j� � �liÞ during

aggregation instead of �li ½j� has the same effect. The

constant �li , if added, would have been eliminated from

the cross correlation.
Note that, the last two terms, representing difference in

propagation delays and attacker induced delays, are

negligible compared to the first term, i.e., ideal cross
correlation value. So, the inclusion of the node in provenance

can be decided correctly by a comparison of Ri with T �. If
Ri 
 T �, the identity of this node was embedded, i.e., the

node contributed to data flow. Otherwise, the node did not

participate. After successfully retrieving the provenance
information, the BS resets DSw and starts collecting IPDs for

future provenance retrievals.
The decoding error can be reduced further by embed-

ding the provenance, i.e., each v½j� 2 V, multiple times. The

number of repetitions is called redundancy factor. At the BS,

the provenance is extracted multiple times and the decision

about the presence of a node in the provenance is taken

based on a majority voting technique. Thus, the effect of any

unusual propagation delay or malicious attacks is miti-

gated. Besides, the knowledge of diameter H of the sensor

network can be used to determine the nodes in the data

flow path more accurately by selecting H nodes with the

highest cross-correlation values.
Complexity. Upon the receipt of every Lp data packets

from a source/cluster, the BS retrieves provenance by

computing the cross-correlation between CSi and pni of

each node in the network. Thus, the provenance retrieval

complexity is OðN � LpÞ, where N is the number of nodes in

the network. The complexity can be improved with

topology knowledge by which the BS can estimate a set of

probable nodes in the data path and compute cross

correlations only for this set of nodes rather than all the

nodes in the network.

9 SECURITY ANALYSIS

In this section, we discuss possible attacks that can be

performed to corrupt the embedded provenance and show

how our scheme defeats them. We discuss from the

perspectives of both the outside and inside attackers.
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9.1 Outside Attacker

With the capability of capturing data packets and inter-
packet timing characteristics, an outside attacker may try to
disrupt provenance security in different ways.

9.1.1 Provenance Detection and Retrieval

An attacker might want to identify and extract the
provenance embedded by a node. Several attacks have
been devised to detect and corrupt the active timing-based
watermark in network flows. Cabuk implements a covert
network timing channel which transmits one packet in a
time interval to encode the bit “1” and stays silent for a
“�1” bit [5]. Such a static encoding of messages leads to a
highly regular behavior in the interpacket delays, whereas
overt traffic arrives anytime, resulting in an irregular
pattern. Cabuk shows how to detect the covert channel by
identifying a regular pattern in the IPDs. Peng et al. develop
an attack technique [22] to detect, recover, duplicate or
remove a message, watermarked in a flow according to the
scheme proposed in [30]. The attacker tries to infer
important watermarking parameters (such as quantization
step used to compute watermark delay, proportion of
watermarked IPDs, etc.) using packet timestamps at each
intermediate host and achieves the attack goals utilizing
these parameters. Luo et al. propose an approach to detect
and autonomously remove spread spectrum flow water-
marks (SSFW) [19]. Since the encoder needs to throttle the
flow’s throughput to a low value for a given period Tc for
embedding a “�1” and spreading the watermark using PN
codes increases the number of such low-throughput periods
significantly, the SSFW causes an abnormal sequence of
low-throughput periods (large delays) in the flow. Hence,
the attacker can detect the SSFW by identifying the presence
of anomalous sequences of low-throughput periods. Kiya-
vash et al. have devised a multiflow attack to detect the
SSFW [17] based on the observation of long low-throughput
period on several flows compared to a trained model.

It is important to notice that these attacks mainly focus
on detecting whether a data flow has a secretely embedded
watermark and, if present, then on recovering/removing it.
On the contrary, the attacker in our context might have
prior knowledge about the fact that a timing-based
provenance watermarking scheme is applied in the sensor
network. Also we are not considering the complete removal
of provenance as well. Therefore, attacks conducted to only
detect the existence of provenance will not help the attacker
anyway, unless the attacker can retrieve the provenance
information of a node. In addition, most of these attacks are
addressed to specific watermarking techniques and hence
cannot be generalized to disrupt any watermarking scheme.
However, the following claim shows that our scheme can
evade such detection and retrieval attacks

Claim 1. By observing the data flow timing characteristics: 1) An
attacker, being unaware of provenance transmission over the
interpacket delays, cannot detect the presence of provenance by:
i) Regularity testing traffic, ii) Inferring the watermark
parameters, and iii) Carrying a multi-flow attack. 2) An
attacker with prior knowledge about provenance embedding
technique cannot retrieve the provenance information of
legitimate nodes. (P1)

Justification. We justify the claim by showing the
robustness of our watermarking scheme against the above
mentioned attacks. In our scheme, the watermarked IPDs
do not follow any regular pattern (unlike [5], where a time
interval is used to encode a “þ1” by transmitting a packet in
the interval and a “�1” by remaining silent for the period).
Though the latency is increased in our case, the IPDs appear
random in nature and it is hard to distinguish the patterns
generated by the watermarking from natural variation in
traffic rates. Hence, our scheme can evade detection based
on regularities in data traffic [5]. Also our watermarking
technique differs from the scheme proposed in [14] as we
formulate the watermark delay in a completely different
way and use every IPD for watermarking purpose. As a
result, the watermark recovery process depending on the
inference of secret watermarking parameters [22] does not
help an attacker in extracting the provenance, embedded
according to our scheme. Moreover, the lack of clock
synchronization between nodes will weaken this attack.
Compared to existing SSFW techniques, our scheme uses
low amplitude watermarks, i.e., much smaller delays (on
the order of few milliseconds) that appear close to natural
network jitter. It makes the provenance invisible to attackers
and thus prevents the attackers from detecting and
removing the provenance [15]. Regarding the multiflow
attack, Kiyavash et al. [14] showed that this attack can be
thwarted if one applies different PN codes or watermarks to
different flows and change the position of watermark in a
flow [17], [14]. In our system, each node possesses unique
provenance information that is watermarked in the flow
and also the embedding position of the provenance bits is
changed continuously. Thus, a multiflow attack cannot
defeat our scheme.

However, a statistical test, based on the assumption that
IPDs of covert traffic center on limited numbers of distinct
values instead of being randomly distributed [4], can detect
the presence of provenance in the time domain. The reason
is that the mean of watermark delays for “þ1” and
“�1” bits converges to two separate values in our scheme.
Still, an attacker cannot retrieve the provenance information
of a node by observing the IPDs of flows from/to that node.
The embedding positions of provenance bits are changed in
every round of embedding based on the packet timestamp
and they also differ from node to node. Hence, given a
sequence of Lp IPDs, the attacker has to try all combinations
of these numbers to get the order of bits in the provenance
information. For example, given 120 delays for a 120 bit
provenance information (with equal number of 1’s and
�1’s), the attacker has to try ð120

60 Þ combinations to get the
original sequence of provenance bits.

Thus our watermarking scheme makes the embedded
provenance invisible to most of the attacks.

9.1.2 Replay Attack

An adversary may fraudulently transmit previously heard
data packets (transmitted by legitimate nodes) to give a false
idea about the sensed environment [24]. For an IPD-based
provenance transmission system (like ours), the attacker
also observes the timing characteristics in order to maintain
them during packet replay. To make the replayed data
appear as fresh, the attacker will update the packet time-
stamp to a recent value. Nevertheless, we claim that
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Claim 2. Replay attack cannot be performed successfully. (P6)

Justification. An old data with fabricated timestamp and
replayed provenance will be discarded at the BS. The
selection of provenance bit for any jth IPD depends on the
timestamp of ðjþ 1Þth packet and thus changes with
the varying timestamp. So, sustaining the old time observa-
tions while marking the packet with a new timestamp does
not allow the BS to extract provenance successfully.
Consequently, the provenance integrity check fails.

9.2 Inside Attacker

As discussed earlier, the inside attacker is a more powerful
attacker which will try to disrupt the provenance security
more intelligently. Obviously, such an attacker can mal-
iciously modify or disable the code of the provenance
module on the compromised node. However, we leave out
this attack as it will alter the provenance for the node in a
way that it will be detected at the BS. Our scheme defends
against the following integrity and forgery attacks:

Claim 3. An attacker, acting alone or colluding with others,
cannot add legitimate nodes to the provenance of data
generated by the compromised nodes. (P3)

Justification. The attacker wants to generate fake data
and construct the provenance including some innocent
nodes fni1 ; ni2 ; . . . ; niUg to mark them as untrustworthy by
making them responsible for false data. However, this
attack will fail since the provenance embedding process
requires node-specific secrets, like the PN code, the secret
key, and the impact factor, and the attacker does not know
these for the uncompromised nodes.

Claim 4. An attacker, acting alone or colluding with others,
cannot successfully add or remove nodes from the provenance
of data generated by benign nodes. (P4)

Justification. Assume that ne and nm are compromised
nodes and collude to execute the attack. A benign data item
d, with provenance pd ¼ fni1 ; ni2 ; . . . ; niUg, is routed through
ne which wants to remove ni2 from pd and replace it with
nm. To remove ni2 from provenance, ne has to remove the
delays added by ni2 from IPDs. Since negative delays
cannot be added, ne will adjust the jth IPD by delaying the
jth packet which decreases the delay introduced to the
ðjþ 1Þth packet for provenance embedding. The amount of
delay to be added can be found by observing the timing
characteristics of packets to and from ni2 . Note that ne has to
adjust the IPDs in reverse order, from j ¼ Lp to 1. To
achieve this, ne has to accumulate all the ðLp þ 1Þ packets,
adjust their IPDs, and then transmit these packets towards
the BS maintaining the adjusted timings. Such an attack
scheme will add too much delay to the packets, which will
definitely be detected at the BS. Regarding the addition of a
node, ne can easily add nm in the provenance if they
collude. However, the provenance integrity check at the BS
will fail and detect an attack.

Claim 5. Provenance forgery can be detected, i.e., given the valid
provenance for a data packet, the attacker cannot associate this
provenance with a data packet with a difference provenance. (P5)

Justification. A malicious routing node ne can perform
two types of attack.

Forgery attack 1. Suppose that the data packet d belongs to
a data flow generated by a benign node ns. The provenance
of d is pd ¼ fns; ni1 ; . . . ; niUg. ne might want to associate pd
with a fake packet de. To achieve this, ne tries to insert de in
the flow while maintaining the observed timing character-
istics. However, to certify that de is a part of the flow
generated by ns, ne must generate the MAC of the data
value and timestamp by using the secret key of ns. Being
unaware of the secrets of ns, ne cannot generate the MAC.

Forgery attack 2. d1 and d2 belong to two different data
flows generated by ns1

and ns2
, respectively. ne swaps the

data value of these packets. Hence, the BS will now identify
ns2

as a part of the provenance for d1 whereas d1 contains
the MAC generated by ns1

.
Hence, the data integrity check will detect the prove-

nance forgery in both cases.

Claim 6. Only authorized parties can access and check the
integrity of provenance. (P2)

Justification. This follows from the provenance decod-
ing process which requires the PN sequences and secret
keys of all nodes in the network (at least for nodes in the
provenance). Only the authorized party (the BS in our case)
that has access to these information can retrieve the
provenance and thereafter check the integrity.

From the above security analysis it follows that an
adversary cannot access or modify the provenance without
being detected. Nevertheless, modifications may destroy
the provenance and impact the robustness of the scheme.
The strength of our scheme is that, with some redundancy
and detection mechanism, it can recover the provenance up
to a great extent. Here, we consider the following attacks by
compromised nodes:

Deletion attack. A compromised node can destroy the
information carried out by the IPDs by dropping data
packets routed through it. Dropping any jth data packet
consumes the (j-1)th and jth IPD. However, we can mitigate
this attack by embedding the provenance multiple times
and employing the majority voting technique when retrieving
the provenance, as discussed in Section 8. The impact and
effectiveness of the redundancy factor (i.e., how many times
the provenance is embedded) on provenance recovery is
evaluated and reported in Fig. 4c.

Alteration attack. This attack perturbs the IPDs with the
goal of moving the cross-correlation values from above the
threshold T � to below the threshold T � and vice versa,
leading the erroneous retrieval of provenance. As in the
deletion attack, embedding provenance multiple times will
reduce the impact of this attack. However, the attacker may
try to change the IPDs within a safe range, since an alteration
to an IPD beyond a certain limit would be recognized by the
BS as an attack. Such a modification, however, would affect
the cross-correlation value negligibly, thus leaving the
provenance decoding process undisturbed.

Insertion attack. A malicious routing node may insert
fake data in the data flow generated by a legitimate node.
Through the MAC verification as discussed in Claim 5 or
using some standard detection mechanism, the BS can
detect such false data packets and discard them. Thus, an
insertion attack will have almost no effect on the provenance
decoding.
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10 EXPERIMENTAL EVALUATION

We now present simulation results assessing the scalability
and robustness of our scheme. For the experiments, we
simulate the sensor network as a tree with diameter H. The
network consists of 1,000 nodes with default values of
H ¼ 8, and Lp ¼ 160 bits. Other parameters include � ¼5,
� ¼ 0:005, const ¼ 100, time unit ¼ 5 ms, and redundancy
factor ¼ 1. We intended to perform experiments on real-life
test data [1], [2]. Though the data sets obtained from these
projects are timestamped and labeled with the data source,
we cannot get the intermediate routing nodes. Note that,
sensor data values are of no interest to us, rather we were
interested in the reported IPDs. Sensor data is generated
every 5 seconds. For each experiment, the simulations were
run 100 times.

10.1 Scalability

The scalability of our solution is evaluated by quantizing
the impact of H on the overall delay due to provenance
embedding. The reason why we investigate the relation-
ship of delay to the network diameter instead of the
number of nodes is that the provenance length increases
linearly with the diameter. In comparison, the effect of the
total number of nodes is much lower. Fig. 4a shows a
comparison of natural IPDs with the watermarked IPDs.
The watermarked IPD increases from natural IPD by a

maximum of 6 percent.The graph also shows that the
watermarked IPD linearly increases with H though the
increasing rate is not high.

As the diameter of sensor network has a direct influence
on the PN length, one has to determine the optimal PN
length for a particular H that ensures a low decoding error.
Fig. 4b reports the percentage of the provenance decoding
error for different PN lengths with varying network
diameters. Predictably, an increase in the PN length results
in a decrease of the decoding error for a particular diameter
as well as the increase in diameter imposes a higher error
rate for a particular PN length.

10.2 Provenance Recovery

These experimental results show how well the decoding
process can recover the provenance against various attacks
discussed in Section 9.

Deletion Attack: the adversary randomly drops � data
packets (of a data flow) routed through it. The provenance
is then decoded and the decoding error is measured for
different � values as reported in Fig. 4c. We evaluated the
performance of our scheme for various redundancy factors.
The decoding error decreases with increasing values of the
redundancy factor.

Alteration Attack: we evaluated the performance of our
decoding technique against two types of alteration attacks
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namely, fixed and random ð�; �Þ alteration attacks. In the
fixed-ð�; �Þ alteration attack, the attacker randomly selects �

2
data packets and delays them by multiplying the corre-
sponding IPDs by ð1þ �Þ. Consequently, each following
IPD (total �2 ) is decreased by ð1� �Þ. Here, � is a fixed value.
In the random-ð�; �Þ attack, the IPDs are multiplied by
ð1þ xÞ, where x is a uniform random variable 2 ½0; ��.
Figs. 5a, 5b, and 5c show the behavior of our scheme against
the fixed-ð�; �Þ alteration attack. In Fig. 5a, as the
percentage of IPDs altered and the alteration factor
increases, so does the decoding error. However, our
solution seems surprisingly resilient. The provenance
decoding error shows low increases for increasing percen-
tages of altered IPDs (Fig. 5b) or the alteration factor
(Fig. 5c). Similar results were experienced for the random-
ð�; �Þ attack as shown in Figs. 5d, 5e, and 5f.

Insertion Attack: in this experiment, we insert � data
packets in the flow, i.e., add � IPDs. Utilizing our detection
mechanism, we can achieve an almost constant decoding
error while varying the percentage of inserted IPDs.
Fig. 4d shows the robustness of our solution against the
insertion attack.

11 DISCUSSIONS

11.1 Cost Analysis

For cost analysis, we compare our scheme with a MAC-
based provenance scheme (MP) as shown in Table 1. In
MP, a node transmits the nodeID and a MAC computed on
it as the provenance record. The nodeID is assumed to be
of 2 bytes. A sensor network specific CBC-MAC of 4 bytes

is computed using TinySec library [16]. Hence, a prove-
nance record is of 6 bytes in MP. As each node in the flow
path embeds its provenance information, the provenance
size linearly increases with the path length (i.e., number of
hops) which also linearly increases the transmitted data
packet size. Thus for a H-hop path, the provenance is of
6�H bytes in MP. On the contrary, our protocol only adds
a 4-byte CBC-MAC computed on timestamp to the data.
We also measure the per-node delay introduced by our
watermarking mechanism and compare it with per-node
data transmission time in MP. For this, we consider a
CC2420 stack implementation in TinyOS with 250 Kbit/s
transmission rate and data payload of 23 bytes. Since the
data length in MP increases with hop count, the transmis-
sion time also increases. Though our time-based water-
marking scheme introduces delay in the data flow, delays
are of the same magnitude as natural network jitter.
However, in resource constrained sensor networks, energy
is mainly consumed for data transmissions. In this regard,
we perform better than MP since data length does not
grow linearly in our protocol. Regarding computational
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Fig. 5. (a), (b), and (c) Resilience to fixed-ð�; �Þ alter attacks, and (d), (e), and (f) Resilience to random-ð�; �Þ alter attacks. (a) Naturally, increasing

rate of altered IPDs (�) and amount of alterations (�) result in higher decoding errors. (b) Provenance decoding error corresponding to increasing �.

Results for different altered data percentages shown. (c) Decoding error against increasing rate of IPD alterations. Smaller � value shows more

resiliency. Similar experiments were performed against random-ð�; �Þ attacks and similar trend in results are shown in (d), (e), and (f), respectively.

TABLE 1
Cost Comparison between Our Protocol and

a MAC-Based Provenance (MP) Solution

D indicates data length and H represents path length. Delay in our
protocol depends on parameter selections.



cost, our protocol requires a node to compute a hash

function whereas MP requires a MAC computation for

provenance embedding.

11.2 Applicability in the Broader Range of Streaming
Applications

As discussed in Section 12, interpacket timing based network

flow watermarking has been widely used to identify the

correlated traffic flows and to detect the source of attack

behind the stepping stone(s). Hence, we can apply our

timing based provenance watermarking scheme to a large

class of streaming applications. To apply our scheme in

streaming environments, a mechanism is required for

distributing secret keys and PN sequences to the participat-

ing nodes. To retrieve provenance, the receiver needs to

know the PN sequences of the possible nodes in the

communication path.

12 RELATED WORK

Work related to our approach falls into two classes:

provenance security, and time-based flow watermarking.
Hasan et al. [12] propose a chain model of provenance

and ensure integrity and confidentiality through encryp-
tion, checksum and incremental chained signature. Syalim
et al. [26] extend this method by applying digital signature
to a DAG model of provenance. However, these generic
solutions are not aware of the sensor network character-
istics. Since provenance tends to grow very fast, transmis-
sion of a large amount of provenance information along
with data incurs significant bandwidth overhead and looses
efficiency and scalability. The most relevant work by Chong
et al. [6] proposes a scheme for embedding the provenance
of data source within the data set. While it reflects the
importance of issues we address, it is not intended as a
security mechanism, hence, does not deal with malicious
attacks. Besides, practical issues like scalability, data
degradation have not been well addressed here.

There exists a lot of work regarding active-timing based
watermarking for network flow [5], [14], [30], [28]. Our
watermarking scheme significantly differs from these
approaches in various aspects. 1) All of these schemes
embed a single watermark message over the IPDs of a flow.
On the contrary, we allow multiple nodes to watermark
provenance over the same set of IPDs. 2) Our decoding
process is completely different since it does not retrieve the
embedded provenance by inferring bits from each IPD.
Instead, we use a unique approach based on a cross-
correlation and threshold based mechanism 3) Several
mechanisms (e.g., [5]) watermark a bit by controlling the
data throughput for a certain amount of time whereas we
prolong the IPD by a small amount of time. Though Wang
and Reeves [30], Kiyavash et al. [17] insert a watermark by
delaying the transmission of some packets, the first scheme
is subject to detection and recovery attack [22]. As described
earlier, our scheme is resilient to this attack. While Kiyavash
et al. use spread-spectrum technique to make watermark
delays much smaller, their decoding process is nonblind and
requires the unwatermarked IPDs to be stored in a database.

13 CONCLUSION

In this paper, we address the novel problem of securely

transmitting provenance for data streams. We propose a

spread-spectrum watermarking-based solution that embeds

provenance over the interpacket delays. The security

features of the scheme make it able to survive against

various sensor network or flow watermarking attacks. The

experimental results show that our scheme is scalable and

extremely resilient in provenance retrieval against various

attacks. In future, we will investigate the feasibility of this

technique for large sized provenance.
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