Web Services Discovery in Secure
Collaboration Environments

MOHAMED SHEHAB
Purdue University
KAMAL BHATTACHARYA
IBM T.J. Watson

and

ARIF GHAFOOR

Purdue University

Multidomain application environments where distributed domains interoperate with each other is
a reality in Web-services-based infrastructures. Collaboration enables domains to effectively share
resources; however, it introduces several security and privacy challenges. In this article, we use
the current web service standards such as SOAP and UDDI to enable secure interoperability in
a service-oriented mediator-free environment. We propose a multihop SOAP messaging protocol
that enables domains to discover secure access paths to access roles in different domains. Then we
propose a path authentication mechanism based on the encapsulation of SOAP messages and the
SOAP-DISG standard. Furthermore, we provide a service discovery protocol that enables domains
to discover service descriptions stored in private UDDI registries.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
controls; H.2.7 [Database Management]: Database Administration—Security, integrity, and pro-
tection; H.3.5 [Information Storage and Retrieval]: Online Information Services—Web-based
services; K.6.5 [Management of Computing and Information Systems]: Security and Protec-
tion—Authentication

General Terms: Security, Algorithms, Design

Additional Key Words and Phrases: Secure collaboration, secure access paths, encapsulated SOAP,
private UDDI registries, protocols, services

The research of M. Shehab and A. Ghafoor was supported by the sponsors of the Center for Edu-
cation and Research in Information Assurance and Security (CERIAS) at Purdue University, and
by the National Science Foundation under NSF Grant IIS-0209111. During the summer of 2006,
M. Shehab was supported by the IBM T.J. Watson Labs.

Authors’ addresses: M. Shehab, University of North Carolina at Charlotte, Department of Software
and Information Systems, 9201 University City Blvd., Charlotte, NC 28223; email: mshehab@
uncc.edu; K. Bhattacharya, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598;
email: kamalb@ibm.com; A Ghafoor, School of Electrical and Computer Engineering, Purdue
University, 465 Northwestern Ave. 305 N. University St., West Lafayette, IN 47907; email:
ghafoor@ecn.purdue.edu.

Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1533-5399/2007/11-ART5 $5.00 DOI 10.1145/1294148.1294153 http://doi.acm.org/
10.1145/1294148.1294153

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:2 . M. Shehab et al.

ACM Reference Format:

Shehab, M., Bhattacharya, K., and Ghafoor, A. 2007. Web services discovery in secure collaboration
environments. ACM Trans. Intern. Tech. 8, 1, Article 5 (November 2007), 22 pages. DOI = 10.1145/
1294148.1294153 http://10.1145/1294148.1294153

1. INTRODUCTION

The vision of a global enterprise is quickly becoming reality. Enterprises of
today are moving towards horizontal integration of business processes beyond
national boundaries. Migrating processes across organizational boundaries
has enabled companies to combine their efforts and become complex virtual
enterprises [Afsarmanesh et al. 1998; Ludwig et al. 1999; Desai and Awad
2005; Ramnath and Landsbergen 2005]. The globally integrated enterprise
leverages the collaboration among the company’s different functions, operation
components, and partners to enable the enterprise to excel.

Business operations that enable collaboration between the stakeholders as-
sociated to different business domains pose several security and privacy chal-
lenges. Consider business domains as an autonomous entity that provides a
set of services and has its own administration and access control policies. Col-
laboration among multiple domains is at its core interoperation between the
access control policies of the collaborating domains. Potential problems at this
level have been analyzed and discussed in Gong and Qian [1996]. Secure in-
teroperability in a multidomain environment is a challenging task [Gong and
Qian 1996; Bonatti et al. 1997; Dawson et al. 2000], even in the presence of
a trusted mediator managing security of such collaboration. In Shehab et al.
[2005a, 2005b] we have proposed a framework for mediator-free secure collabo-
ration that enables domains to cooperate in a dynamic and ad hoc manner with
no trusted central mediator managing the collaboration environment.

Web service technologies and specifications enable the description, messag-
ing, choreography, and composition of Web services [WSDL 2003; SOAP 2003;
WSCI 2002; BPEL4WS 2002]. The WS-Security stack [WS-Security 2006] de-
scribes the different components that are deemed important to enable security
for web services. In this article we consider a multidomain system where each
domain provides a set of Web services. Our intent is to propose a mechanism to
allow for both secure interoperability and service discovery in a mediator-free
multidomain Web-service-based system. For example, in the healthcare sys-
tem, our mechanism would enable physicians to discover and access services
provided by other hospitals in different states. Figure 1 shows an example
service collaboration between hospitals in different states. The edges between
hospitals signify the established service collaborations. Using these collabora-
tion agreements, physicians in Ohio (Hospital A) are able to acquire services
in Minnesota (Hospital B). Using a combination of such collaborations enables
physicians in Ohio to ultimately acquire services in California (Hospital D).
When a patient from California moves to Ohio, our mechanism would enable
doctors in Ohio to acquire authorizations to access services in California to ac-
quire the patient’s records stored in California. We use healthcare as a running
example throughout this work. This article has three main contributions.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:3

Fig. 1. Service collaboration between hospitals in different states.

First, we propose a multihop SOAP-based messaging protocol that allows
domains to discover access paths to appropriate roles in different domains. In
our multihop SOAP messaging protocol, a SOAP message encapsulates previ-
ous SOAP requests to enable domains to make access control decisions based
on the request history. Second, we propose an authentication mechanism that
ensures the integrity and authenticity of the encapsulated SOAP messages
based on the SOAP-DISG standard [SOAP-DSIG 2001]. We show that the au-
thentication mechanism is resilient to several types of attacks, such as path
corruption, path replay, and colluding domains attacks. Third, we propose a
service discovery protocol that enables domains to locate service descriptions
(WSDLs) [WSDL 2003] stored in the private UDDI registries [UDDI 2003] of
other domains. The service discovery protocol not only discovers services, but
also finds authorizations required to access such services. We also present ex-
perimental results obtained from our implementation of the SOAP encapsula-
tion technique on legacy Web servers.

The rest of the article is organized as follows. Section 2 describes some pre-
liminary concepts to facilitate background for the rest of the work. Section 3
presents the proposed SOAP-based access path discovery protocol which is
based on encapsulating SOAP messages. Section 4 presents the proposed ser-
vice discovery protocol which enables domains in a mediator-free environment
to publish and query private UDDI registries. In Section 5 we present our ex-
perimental results. Related work is discussed in Section 6. Finally, we present
our conclusions in Section 7.

2. PRELIMINARIES

In this article, we assume a collaboration environment in which a role-based
access control (RBAC) model [Ferraiolo et al. 2001, 2003] is adopted by all the

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:4 . M. Shehab et al.

Domain A Domain B Domain C Domain D

Fig. 2. Access paths and violations.

collaborating domains to model their access control policies. RBAC is suitable
for specifying the security requirements of a wide range of commercial, medical,
and government applications [Sandhu et al. 1996; Bertino et al. 1999; Atluri
et al. 2001], and is being standardized by the National Institute of Standards
and Technology (NIST) [RBAC 1996]. A domain that does not use RBAC as its
access control model can easily generate an RBAC policy to join the collabora-
tion. The analysis presented in the article can still be applied when other access
control models are adopted. In RBAC, permissions are associated with roles. A
set of permissions associated with a role is then granted to users by giving them
membership of that role. The role permissions enable roles to execute a set of
services where each role r is capable of executing a set of services referred to as
the service set SS(r) = {s1, ..., s,}. The access control policy for domain D; is
modeled as a directed graph G; = (V;, A;), where the vertex set V; represents
roles and the arcs set A; portrays the dominance relationship between roles.
For example, if role r; dominates rg, (ro < r1), then (r1,7r3) € A;. By using the
RBAC permission inheritance properties [Crampton 2003] a user acquiring role
r1 can get permissions assigned to role ro. For example, in a hospital the doctor
role dominates the nurse role, giving a doctor the ability to acquire the access
rights given to a nurse.

Collaboration among domains is achieved by introducing cross-domain map-
pings between roles in different domains. We will refer to such mappings as
cross-links. A cross-link (r,,r,), indicates that user acquiring role r, in domain
D(r,) is able to acquire role r, in domain D(r,). Figure 2 shows the cross-links
as dotted edges connecting roles in neighboring domains. In this work, we as-
sume that cross-links are selected by domain administrators according to the
interoperability requirements of each domain. These links could be selected
when the service-level agreements (SLAs) are negotiated [Myerson 2004; Dan
et al. 2004]. A cross-link (ry,r,) starts at an exit role r, and ends at an entry
role r,; we say that role r, is an out-neighbor of role r, and that role r, is an
in-neighbor of role r,. For example, in Figure 2, domains A and B are neigh-
bors. In cross-link (741, 7g3), role rg3 is the out-neighbor of role r4;. Assuming
ra1 and rg3 are doctor roles in domains A and B, respectively, this would enable
doctors in domain A to acquire services available for doctors in domain B. Fur-
thermore, the domain administrators agree on a set of restricted cross-links
that are prohibited to exist during the collaboration. These restricted access
links are similar to the negative authorizations adopted in several access con-
trol models. Separation of duty constraints can be specified using a combination

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:5

of negative cross-links [Li et al. 2004] which we will refer to as the restricted
access set, denoted by R. For example, in Figure 2 if (ra1,7ps2) € R, then a user
acquiring role r; is not permitted to obtain role rps. In our healthcare example,
negative authorizations enable hospitals to prohibit access from other hospitals
which might be managed by competing healthcare providers.

2.1 Mediator-Free Secure Interoperability

According to Gong and Qian [1994, 1996] secure interoperability should ensure
two principles. The first is the principle of autonomy, which requires that any
access permitted within an individual domain must also be permitted under
secure interoperability. The second is the principle of security, which requires
that any access not permitted within an individual domain should not be per-
mitted under secure interoperation. More formally, secure interoperability is
defined as: Given n domains G; = (V;, A;),i = 1, ..., n, a set of cross-links F,
and a restricted access set R, an interoperation @ = (U’ ,V;, Aq), where Aq
is the resulting arc set Aq C {U"_ | A; U F}, is secure if it satisfies all of the
following conditions:

(1) AgNR =40.
(2) Yu,v € V;, (u,v) is permitted in A; if and only if (¢, v) is permitted in Ag.

Gong and Qian proposed several solutions to solve the secure interoperabil-
ity problem using a central trusted third-party that has a global view of the
all access control policies of the collaborating domains. In such a setting, all
domains are required to share their access control policies with the central
third-party and have to report any policy updates. The third party ensures that
the principles of autonomy and security are not violated by selecting a subset
of the established cross-links. Gong and Qian have shown that this problem
is NP-complete, as well as that the compiled solution is static and has to be
recomputed if any policy is changed or updated.

In our previous work [Shehab et al. 2005a, 2005b] we proposed a mediator-
free framework to ensure secure interoperability between collaborating do-
mains. A mediator-free collaboration is a completely distributed form of co-
operation where domains comply in making access control decisions to avoid
access violations. In a mediator-free environment none of the collaborating do-
mains has a global view of all the access control policies; instead, the domains
view the collaboration environment only through their established cross-links.
In a mediator-free environment there is no central trusted third-party and do-
mains are able to dynamically make access control decisions by utilizing the
user’s access history. The access history is the sequence of roles acquired from
the home domain to the target domain in the collaboration environment, and
we refer to it as the access path. For example, in Figure 2 the access path from
role ra1 to role rps is P = {rai,rms,rB1,7c2,rc1, 'p3}. Domains use the access
paths to make access control decisions and to prevent security violations; this
mechanism is similar to the Chinese wall security policy [Brewer and Nash
1989] where the access history controls future access control decisions. The ac-
cess path enables domains to make localized access control decisions without

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:6 . M. Shehab et al.

the need for a global view of the collaboration environment. Our framework
translates the Gong and Qian [1994, 1996] secure collaboration requirements
into secure path requirements to ensure secure collaboration. A secure access
path is defined as follows.

Definition 2.1. Let P = {ry,rs,...,r,} be an access path, wherei < j im-
plies that role r; was acquired before r;. Let D(r;) denote the domain of role r;.
The path P is secure if it satisfies the following conditions:

Cl. Foralli < j andr;,r; € P,if D(r;) = D(r;) thenr; <r;.
C2. For all r;,r;yq1 € P, if D(r;) # D(r;y1) then (r;,r;;1) € F.
C3. Foralli < jandr;,rj € P,(r;,r;) € R.

Condition C1 ensures that roles acquired from the same domain are obtained
according to the domain’s role hierarchy. This ensures that the access control
policies of the domains included in the path are not violated. Conditions C2 and
C3 ensure that sets ¥ and R are honored. When a cross-link is added to a secure
path to ensure that the resulting path is secure, it has to be checked against
the secure path conditions. We refer to these as the path linking rules [Shehab
et al. 2005a]. In such a setting, domains are simply focused on ensuring that
access paths are secure to avoid violations.

3. SOAP AND ACCESS PATH DISCOVERY

Simple object access protocol (SOAP) [SOAP 2003] is an XML-based messaging
protocol. SOAP defines a set of rules for structuring messages that can be used
for sending Web service requests and responses. It is not tied to any particular
transport protocol, operating system, or programming language. SOAP mes-
sages consist of three parts, namely, an envelope, header data, and a message
body. The envelope element identifies the XML document as a SOAP message.
The header is an optional element which contains application-specific infor-
mation such as authentication and payment information. The body element
contains the actual SOAP message intended for the SOAP message receiver.
In this section we propose a mechanism where SOAP messages are used to
discover access paths between roles in different domains.

3.1 Access Path Discovery

Domains are able to collaborate with their neighbors via their established
collaboration cross-links. Neighboring domains are single-hop collaborations
which are inherently known by the involved domains. On the other hand, do-
mains that have no established cross-links between them on which to collab-
orate need intermediary domains to establish secure access paths. To enable
domains to discover the access paths available through intermediary domains,
we propose using a SOAP-based distributed path discovery algorithm. For ex-
ample, in Figure 1 path discovery would enable doctors in Ohio (Hospital A)
to discover authorizations to acquire services in California (Hospital D). The
path discovery protocol should ensure that discovered paths are secure by as-
certaining whether they satisfy the secure path requirements discussed in the

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5.7

Fig. 3. SOAP message propagation.

preliminaries in Section 2. Furthermore, it should accumulate signatures that
enable domains to verify the integrity and authenticity of the discovered paths.

When a home domain wishes to discover an access path to a role providing
a certain Web service in a target domain, the home domain generates a path
request SOAP message and sends it on its outgoing cross-links to neighbor-
ing domains. Upon receiving the path request message, the receiving domain
extracts the accumulated access path from the received request. Then the ex-
tracted path is checked against the secure path rules to ensure that the path
is secure according to the receiving domain’s access control policy, the cross-
link set, and the negative cross-links, as discussed in previous sections. The
request is dropped if the path is not secure. Otherwise, if the receiving domain
is the target of the received request, then it generates a reply and sends it
to the requesting domain. If the receiving domain is not the target of the re-
quest, then it generates a new SOAP path request message and encapsulates
the received request into the body of the new SOAP message. Then the new
compiled SOAP message is forwarded to the domain’s neighboring domains.
Note that the complied SOAP message encapsulates the previous SOAP re-
quest, thus enabling domains to extract access path information, as will be
discussed shortly. To avoid loops, requests are forwarded only to domains that
are not already included in previously encapsulated requests. Furthermore, to
control the size of the propagated access paths, a maximum path length which
we refer to as Pmax is enforced. Only paths having length below Pmax are
propagated. Figure 3 shows an example of an on-demand path discovery initi-
ated by domain A from role r4, to determine access paths to roles reachable in
domain D. Domain A generates a SOAP request (SOAP,), sends it to its neigh-
boring domain B. Domain B generates a new SOAP request message (SOAP),
encapsulates SOAP, into SOAP, and forwards the request to domain C. Then
domain C encapsulates SOAP; into a new SOAP request (SOAP;) and forwards
it to domain D. Using such a mechanism, the path information is accumulated
by encapsulating previous SOAP requests with the current one; in this manner
the domain receiving the request is able to extract the access path by examining
the encapsulated requests. Referring back to the hospital example in Figure 1,
SOAP message propagation would enable a doctor in Hospital A to discover
roles in Hospital D.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:8 . M. Shehab et al.

<SO0AP; :Envelope>
<SO0AP; :Header>
<SOAP;:Signature> ... </SOAP;:Signature>
< /S0AP, : Header >
<SO0AP; :Body >
<request>

<currentRole> ... </currentRole>
<nextRole> ... </nextRole>
<targetRole> ... </targetRole>

<targetService>
<find_service>
<name>
Get Patient Records
<name>

</find_service>
< /targetService>
</request>
<SOAP,_; :Envelope> ... </SOAP;_;:Envelope>
</SDAP¢ :Body>
< /SOAP; :Envelope>

Fig. 4. SOAP path request message.

Figure 4 shows the format of the SOAP request message. The currentRole
element is the role from which SOAP is being sent or forwarded. The next Role
element is the role to which the request is being sent. The targetRole is the
role that the request is targeting; the target role information is included only
if the requester knows the target role. For example, a doctor in hospital A
can request that the targetRole be a doctor in hospital D. The targetService
element is a description of the target service that the request is querying: This
component contains elements such as find _business and find_service which are
commonly used to query web service description registries [UDDI 2003]. For
example, a doctor might request the service “Get Patient Records” in a remote
hospital. Note that SOAP message SOAP;_; is encapsulated in the body of
SOAP message SOAP;, the shaded portion in Figure 4.

By encapsulating SOAP messages and using the SOAP signature algorithms
[SOAP-DSIG 2001], domains are able to accumulate the access path and to ver-
ify the integrity and authenticity of the collected access paths. The sequence
of SOAP message encapsulation and forwarding is shown in the example de-
scribed in Figure 5. Each domain updates the role information in the SOAP
messages before forwarding it to its neighboring domains, thus enabling do-
mains to extract the access path by simply traversing the encapsulating SOAP
messages in the request.

3.2 Path Authentication

SOAP path request messages propagate between intermediate domains until
the target domain is found. A mechanism is required to ensure the authenticity
and integrity of the accumulated access path. The SOAP security extensions:
digital signature (SOAP-DSIG) specification [SOAP-DSIG 2001] uses the XML
signature specification [XML-Sig 2002] to represent an XML signature within a
SOAP message. Using the SOAP message encapsulation mechanism proposed
in the pervious section as well as the SOAP-DSIG specification, we propose
a path authentication mechanism in this section. The proposed authentication
mechanism is based on a signature that is generated by all the domains included

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:9
Home Domain Intermediate Intermediate Target Domain
{A} Domain {C}

Domain {B}

1. Generate a SOAP request
(SOAPy) to discover
access path to role (rp3) or
a service provided by
(rp3) in target domain D.
Set cro=rai, nro=rss,
1ro=rps.

. Sign the request and insert
signature in header of
SOAP,.

3.Send SOAP, to domain B

on cross-link (raz,7p1).

]

1. Validates signatures in
SOAP,.

2. Extract accumulated
access path from SOAP,
and check path linking
rules.

3.Generate a new SOAP
request (SOAP;) and
encapsulate SOAP, in the
body of SOAP;. Set
Cr=rg3 Nri=rcy, tr;/=rp;.

4.Sign SOAP; and insert the
signature in the header of
SOAP;.

5.Send SOAP; to domain C
on cross-link (rgs3,rc;).

1. Validates signatures in
SOAP; and encapsulated
SOAP,.

2. Extract accumulated
access path from SOAP,
and check path linking
rules.

.Generate a new SOAP
request (SOAP;) and
encapsulate SOAP; in the
body of SOAP,. Set
Cry=Fca, NF=Ipy, 1F2=Fp3.

.Sign SOAP; and insert the
signature in the header of
SOAP,.

5.Send SOAP; to domain D
on cross-link (rez, rp1).

w

~

1. Validates signatures in
SOAP; and encapsulated
SOAP messages.

2. Extract accumulated
access path from SOAP,
and check path linking
rules.

3. Prepare SOAP response
SOAP; and encapsulate
SOAP; in body of SOAP;.

4.Sign SOAP; and insert the
signature in header of
SOAP;.

5.Return outgoing SOAP

response to Domain A.

Fig. 5. SOAP intermediary access path discovery sequence.

in the access path. The authentication scheme should preserve both the path
contents and path ordering.

A SOAP path request message SOAP; is composed of a body and header
which contain the elements

SOAP; ={Header;, Body,}
Body; = {cr;, nr;, tr;, SOAP;_1}
Header; ={Signature;},

where cr;, nr;, and tr; are the currentRole, next Role, and targetRole in SOAP;,
respectively. Note that the body of SOAP; also includes the soap message
SOAP;_;. The soap signature is included in the header of the SOAP message
and computed as

Signature; = sign(h(Body;), e;),

where A() is a secure one-way hash function [Schneier 1996], and sign(M, K)
is a signature function that signs the message M using the key K [Rivest
et al. 1978]. Each domain D; has a private key e¢; and a public key d;. Do-
main D; computes the Signature; by computing the signing message digest of
Body, using its private key e;. The signature function has the property that
sign(sign(M ,e;),d;) = M. Note that this signature cannot be forged, as it is
signed using the private keys of the involved domains. Figure 6 shows the
SOAP request message (SOAP;) sent from domain B to domain C in Figure 3.
Lines (24—49) in the shaded region of Figure 6 indicate the encapsulated SOAP
request message (SOAP,) sent from domain A to domain B. Using the SOAP-
DSIG standard, lines (06-07) indicate that the signature method used is based

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:10 o M. Shehab et al.

(00) <SOAP-ENV:Envelope>
(01) <SOAP-ENV:Header>

(02) <SOAP-ENV:Signature

(03) xmlns="http://schemas.xmlsoap.org/soap/security/2000-12">

(04) <ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" >
(05) <ds:SignedInfo>

(06) <ds:SignatureMethod

(07) Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-shal"/>
(08) <ds:Reference URI="#Bodyl">

(09) <ds:DigestMethod

(10) Algorithm="http://www.w3.org/2000/09/xmldsig#shal" />
(11) <ds:DigestValue>P71rN3f6rv33vKgbx- - - </ds:DigestValue>
(12) < /ds:Reference>

(13) </ds:SignedInfo>

(14) <ds:SignatureValue>Lx9jje45KrsM3=- - - </ds:SignatureValue>
(15) </ds:Signature>

(16) < /SOAP-ENV:Signature>

an < /SOAP-ENV:Header>

(18) <SOAP-ENV:Body SOAP-SEC:id="Bodyl">

(19) <m:getAccessPath xmlns="http://www.domainC.com/ws">

(20) <currentRole> DomainB.role3 </currentRole>

(21) <nextRole> DomainC.rolel < /nextRole>

(22) <targetRole> DomainC.rolel </targetRole>

(23) </m:getAccessPath>

(24) <SOAP-ENV:Envelope>

(25) <SOAP-ENV:Header>

(26) <SOAP-ENV:Signature

27) xmlns="http://schemas.xmlsoap.org/soap/security/2000-12">
(28) <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" >
(29) <ds:SignedInfo>

(30) <ds:SignatureMethod

(31) Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
(32) <ds:Reference URI="#BodyO">

(33) <ds:DigestMethod

(34) Algorithm="http://www.w3.org/2000/09/xmldsig#shal" />
(35) <ds:DigestValue>j6lwx3rvEPOv- - - </ds:DigestValue>
(36) </ds:Reference>

(37 </ds:SignedInfo>

(38) <ds:SignatureValue>MCOCFFrVLtR1k=- - - </ds:SignatureValue>
(39) </ds:Signature>

(40) < /SOAP-ENV:Signature>

(41) < /SOAP-ENV:Header>

(42) <SOAP-ENV:Body SOAP-SEC:id="BodyO">

(43) <m:getAccessPath xmlns="http://www.domainB.com/ws">

(44) <currentRole> DomainA.role3 </currentRole>

(45) <nextRole> DomainB.rolel </nextRole>

(46) <targetRole> DomainC.rolel </targetRole>

47 < /m:getAccessPath>

(48) < /SOAP-ENV:Body>

(49) < /SOAP-ENV:Envelope>

(50) < /SOAP-ENV:Body>
(561) </SDAP-ENV:Envelope>

Fig. 6. SOAP message encapsulation and signature.

on RSA. Line (08) specifies the part of the SOAP message for which the signa-
ture is to be computed, which refers to the reference URI:"#Bodyl" element.
Note that line (18) shows that the SOAP body is given the same identifier
id="Body1", which indicates that the signature of SOAP; is computed by sign-
ing the digest of the body of SOAP;.

When domain D; ;1 receives SOAP message SOAP;, the signature is verified
by performing the check

h(Body ;) = sign(Signature;,d;) forall 0<j <i.

Note that signature verification is performed using the public key information
of the involved domains, thus the verification does not require contacting these

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:11

extractPath() :
Input: msg = SOAP Message
Output: P = Extracted access path.

(1) If verifySignature(msg) == false then Return null

(2) P = {msg.cr,msg.nr}

(3) While (msg = getEncapsulated(msg)) is not null
(a) If werifySignature(msg) == false then Return null
(b) P = {msg.cr,msg.nr}||P

(4) Return P

verifySignature() :
Input: msg = SOAP Message
Output: true if signature is valid, false otherwise.

(1) ¢ = domain(msg).
(2) S = sign(msg.Signature,d;).
(3) If (S == h(msg.Body)) then Return true else Return false.

Fig. 7. Path extraction and signature verification algorithms.

domains. Figure 7 shows the detailed path extraction and signature verification
algorithms.

3.3 Security Analysis

In this section we show the resiliency of our proposed SOAP authentication
technique to several security attacks in a mediator-free collaboration environ-
ment. Throughout this section we assume that the sequence of SOAP requests
is {SOAP,, SOAP., ...,SOAP;_1,SOAP;, ...,SOAP,}, where, without loss of
generality, assume that the SOAP message SOAP, is sent from domain D,
to domain D;, ;. The access path accumulated in SOAP message SOAP, is as
follows:

P(SOAP;) ={crg,nrg,cri,nr1,...,Crp_1, \rh_1,Cry, 0y, . . ., Cly, NIy}

3.3.1 Path Corruption Attack. The access path extracted from the SOAP
path request message is one of the main components used for making access
control decisions in a mediator-free environment. A malicious domain may at-
tempt to alter the acquired access path by removing or adding entries to the
current access path. The path corruption attack is composed of two types of
attacks, namely, path insertion and deletion.

The path insertion attack is performed by an attacker in an attempt to
insert a domain in the acquired access path. Given path P(SOAP,), the at-
tacker attempts to alter the access path by inserting a SOAP message SOAP,
in SOAP,, which results in a new SOAP message sequence {SOAP,, SOAP,,
..., SOAP;_1,SOAP,,SOAP;, ...,SOAP,}, where the extracted access path
is

P(SOAP,) ={cro,nro, cri,nr, ...,Crp_1, Mig_1,Cry, My, Crp, Ak, . . ., Cly, N}

The attacker is unable to generate the signature of the new SOAP sequence,
as this requires the generation of new signatures for SOAP;, k < j < n, which
in turn requires knowledge of the secret keys e, for £ < j < n. This indicates
that the corrupted path cannot be authenticated by the attacker.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:12 o M. Shehab et al.

The path deletion attack is performed by an attacker in an attempt to delete
a domain in the acquired access path. Given path P(SOAP,), the attacker
attempts to alter the access path by deleting a SOAP message SOAP}, in
SOAP,. This results in a new SOAP message sequence {SOAP,, SOAP;, ...,
SOAP;,_1,SOAP; 1, ...,SOAP,}, where the extracted access path is

P(SOAP,) ={cro,nro,cri,nry, ..., Cre_1, Wk _1,Cry1, Mk 41, - - ., CTp, NI}

The attacker is unable to generate the signature of the new SOAP sequence,
as this requires the generation of new signatures for SOAP;,k+1 < j <n, and
this requires knowledge of the secret keys e;, for £ + 1 < j < n. Consequently,
this path cannot be authenticated by the attacker. Note that other types of
attacks such as path reordering are not possible because the attacker cannot
prove the authenticity of such a path.

3.3.2 Other Attacks. In this subsection we discuss some other interesting
attacks and propose some possible solutions to prevent and detect such attacks.

In a path replay attack, a malicious domain attempts to capture a request
submitted during a valid session and tries to reply to it. This attack can be
easily mitigated by extending the SOAP path request fragment to include a
time interval in which the request is valid. The request fragment is in the SOAP
body, which is signed by our proposed authentication technique and thus the
attacker is not able to alter such information.

In a colluding domains attack, two or more domains in the collaboration
environment collude to forge an access path. For example, two domains agree
to provide a cross-link which did not previously exist. In this case, if the cross-
link involves only the colluding domains, then this cannot be thought of as an
attack, as both domains agreed to provide such a cross-link. However, if the
cross-link involves domains other than the colluding ones, then the signature
computed would require noncolluding domains, and this is similar to the path
corruption attack discussed earlier. In this case the conspiring domains are not
able to generate a fake signature.

The attacks discussed earlier are related to the authenticity of the access
path. Other types of attacks, such as denial-of-service, eavesdropping, and mas-
querading, are assumed to be handled at other system layers. For example,
eavesdropping can be handled at the transport layer by using HTTPS to trans-
port packets between web servers.

4. SERVICE DISCOVERY IN MEDIATOR-FREE ENVIRONMENTS

Service discovery is an important component of Web service architectures and
Web service composition [Medjahed et al. 2003]. Current Web service architec-
tures [Schmidt et al. 2005; Cox and Kreger 2005] enable domains to publish
service descriptions (WSDLs) [WSDL 2003] of their provided services in pub-
lic universal description discovery and integration (UDDI) registries [UDDI
2003]. Services are simply discovered by querying the public UDDI registry. A
mediator-free environment requires that no entity has a global view of the col-
laboration environment. In this section we propose a private UDDI infrastruc-
ture in which each domain maintains a private UDDI registry. Service discovery

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:13

High-level Specification p | Service Matching Composite Service
Service Specs and Selection Generation
Query for !
/Eﬂ /B) —— > (O Q_ o

Service
Private UDDI inti
fII{Vea ¢ Ul O WSDL Descriptions and O O O
gistries g O
L O 8 Access Paths

Fig. 8. Service discovery in private UDDI registries.

<xrta>
<rta rta_id="RTA1">
<rolename> Junior Doctor </role name>
<serviceBag>
<service name> PatientRecordUpdate </service name>
<service name> PrescriptionRecordCreate </service name>
< /serviceBag>
</rta>
<rta rta_id="RTA2">
<rolename> Senior Nurse </role name>
<serviceBag>
<service name> PatientRecordRead </service name>
< /serviceBag>
</rta>
</xrta>

Fig. 9. Role-to-service assignments.

in our architecture intends to discover both services and the authorizations re-
quired to access such services. To enable both the discovery of authorizations
and services, our service discovery is closely tied to the access path discovery
introduced in previous sections. Figure 8 shows the proposed service discovery
architecture as part of the general service composition framework [Medjahed
et al. 2003]. In any business solution, it starts with high-level service specifi-
cations, and from there these specifications are mapped into a required set of
composed services. Then the service discovery enables finding the necessary set
of services to enable the composition of the required higher-level service.

4.1 Service Discovery Using Private UDDI Registries

In this architecture the UDDI registry is moved inside the domain; thus, for a
domain D; to access the UDDI registry of domain D}, it should have sufficient
authorizations. In a mediator-free environment authorizations are acquired
by building access paths to roles in other domains. Each role in a domain is
capable of performing a set of services that is dictated by the role-to-service
assignment. In this architecture, to discover a service, domains should disclose
paths to those roles that are able to perform such a service. The domain access
control policy includes the access role hierarchy, the set of cross-links, the set
of restricted links, and role-to-services assignments which map roles to ser-
vices. Figure 9 shows the role-to-service XML document. Each role is assigned

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:14 o M. Shehab et al.

Signature | 2a 5a | Request 5b
Verification 4 7 Reply
Access Request
Control Evaluation
Path 2b Request 6¢
Extraction > > Forwarding

A

6b

Private
UDDI registry

Access Control
Policy

Fig. 10. Service discovery in private UDDI registries.

a serviceBag element which contains the names (identifiers) of services as-
signed to this role. For example, a Junior_Doctor role is assigned to services
Patient Record U pdate and PrescriptionRecord Create.

Service discovery requests are sent using SOAP and follow the same SOAP
encapsulation technique discussed earlier. When a home domain wishes to
discover a service, the target role able to execute this service is not known,
so the targetRole element in the SOAP path request message is not included
(refer to Figure 4). On the other hand, the target service to be discovered is
known and its description is entered in the targetService element in the request
message, which can contain elements such as find _business and find_service
that are commonly used to query UDDI registries [UDDI 2003] (please refer to
Figure 4). The domain then forwards the request to its neighboring domains.
When a domain receives a request its private UDDI registry is queried accord-
ing to the entry role in that domain. If the domain is able to find the requested
service, then it replies to the home domain. If the private UDDI registry
does not contain the requested service, then the domain updates the access
path by encapsulation and sends it to its neighboring domains. This enables
domains to discover the requested services and the access path required for
authorization of the requested service. Figure 10 shows the modules involved
in the service discovery protocol in each domain. The numbered arrows in the
figure represent different steps in our proposed discovery protocol.

Steps 1-2. When a service discovery arrives at a domain, the request signa-
tures are verified to ensure its authenticity and the encapsulated access path
is extracted. If the request passes the signature verification checks, it is passed
to the access control module, otherwise the request is dropped.

Step 3. The access control module queries the access control policy to ensure
that the accumulated access path is secure with respect to the path-linking
rules, which check that the path does not violate the local hierarchy, and honors
the set of cross-links and the set of negative links. If the access path is not
secure with respect to the path-linking rules, the request is dropped. Note that
the nextRole role in the service request SOAP message is a role in the current

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:15

domain, and the access control module assigns this role to the service request;
we refer to this role as r;. Assigning role r, to the request indicates that the
latter is able to discover services accessible to role r,;. The service request and
assigned access role are forwarded to the request evaluation module.

Step 4. The request evaluation module queries the private UDDI registry
using the information in the targetService element of the path request. It does
so to discover services according to the service request criteria. The private
UDDI returns a set of service identifiers; we refer to this set as S.. Then the
request evaluation module queries the access control policy to find the set of
services assigned to the role r;, which we refer to as the set S, . Note that the
set S, includes all services assigned to roles that role r, dominates. Then the
request evaluation module computes the join between the sets of services S,
and S, , which we refer to as the set S;esur = Sc N Sy, .

Steps 5—6. If the set S,.s.; is empty, the request is updated and forwarded
to neighboring domains. Otherwise, the domains send a reply to the querying
domain indicating the set of services S,.s,;; and the set of encapsulated SOAP
request messages to indicate the access path and path signature.

5. EXPERIMENTAL RESULTS

In this section we present experimental results generated from a proof-of-
concept implementation of our SOAP-based path discovery protocol. All experi-
ments were performed on an Intel Pentium IV CPU 3.2GHz with 512MB RAM,
running Linux and Apache Tomcat. The SOAP encapsulation was implemented
using the SOAP and the SOAP-DSIG standards using Java J2SE v5.0. Each
domain was implemented as a separate Web server. The domain access hier-
archy was implemented as a binary tree of access roles. The cross-links were
generated a priori based on a neighborhood probability p, and these cross-links
were then distributed on the involved domains. To evaluate the performance
of the SOAP-based path discovery algorithm, each domain generated path re-
quests and several performance metrics were recorded. The collected metrics for
each path request include the discovered path length, the number of forwarded
messages, the number of discovered domains, the number of discovered roles,
and the number of replies received for each request. The collected statistics
were averaged over all requests and all domains. In the following subsections
we present the effects that several of the parameters, such as the number of
domains, the maximum access path length Pmax, and the neighborhood prob-
ability p, had on the collected metrics.

5.1 Number of Domains

Several experiments were executed to investigate the effects of varying the
number of domains on the collected metrics. In the following presented experi-
ments the neighborhood probability p was set to 0.1. The maximum path length
Pmax was set to the number of domains in the collaboration environment; this
removes the effect of Pmax, as its effect was studied in subsequent experi-
ments. In our lab, we were able to set-up and run up to 26 domains running

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:16 o M. Shehab et al.

our SOAP-based path discovery algorithm. Figure 11 shows the effects of vary-
ing the number of domains on different discovery metrics. The basic trend is
that the different metrics increase as the number of domains in the system in-
crease. For example, the number of discovered domains and roles increase with
the number of domains (see Figures 11(b) and 11(c)). Note that the number
of discovered domains and number of discovered roles follow a similar trend.
Experiments were performed for different p values and they showed similar
trends.

5.2 Effects of Pmax

The value of Pmax controls the maximum allowable discovered path length.
In this section the value of Pmax was varied and metrics were collected for
collaboration environments with 13 and 26 domains, respectively. The neigh-
borhood probability p was set to 0.1. Figure 12 shows the generated results of
such experiments where the value of Pmax was varied from 4 in steps of 2.
Note that by increasing the value of Pmax, domains are able to discern more
roles because discovery requests are able to propagate farther into the collabo-
ration environment. By our setting of Pmax we are able to control the behavior
of the discovery algorithm: For example, in Figure 12(d) we show that by set-
ting Pmax to 12 we were able to obtain average of an discovered roles in a
26-domain environment.

5.3 Effects of the Neighborhood Probability p

The neighborhood probability is the likelihood by which domains become neigh-
bors. In the presented experiments we used 26 domains. The neighborhood prob-
ability p was varied and experiments were run for different values of Pmax.
Figure 13 shows the experimental results. Note that as the number of neighbors
increases, so does the number of messages forwarded and the number of replies
per request, as indicated in Figures 13(a) and 13(b). Also note that the aver-
age discovered path length increases until p = 0.2, after which domains have
more neighbors and thus shorter paths to requested roles; hence the average
discovered path length decreases (see Figure 13(c)).

6. RELATED WORK

The problem of secure interoperation in a multidomain environment has been
addressed in Cong and Qian [1994, 1996] and Shafiq et al. [2005]. In all such
approaches a trusted third-party that has a global view of the collaboration
environment is required to perform the security policy composition and inte-
gration. Dawson et al. [2000] presented a mediator-based approach to provide
secure interoperability for heterogeneous databases. In this approach all access
requests go through the central mediator which has a global view of the collab-
oration environment. Other strategies related to centralized database collabo-
ration have been proposed in Morgensternet al. [1992], Jonscher and Dittrich
[1994], Vimercati and Samarati [1997], and Wiederhold et al. [1998].

In the research community there has been an effort to highlight the chal-
lenges associated with Web service security. Research in the industry has had

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:17

50 T T T T T T T T T T T 1.8 T T T T T T T T T T T T
“5’45' 1.6f h
€]

g 40F 2 1.4f 1
[} L =3
8,35 942t .
© [
@ 30 o
2 8 1} |
5 25- 2
kel o8} 1
g 20f E
S [} , 4
g 15k _g 0.6
E 10t Z 0.4 1
§ sk 0.2t 1

0 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of Domains Number of Domains
(a) (b)
5 T T T T T T T T T T T 16 T T T T T T T T T T T T
4.5

w
w0 on

Number of Discovered Domains
n
N (%]

Number of Discovered Roles
(o)

6l
15
4t
1
05 . 2r
0 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of Domains Number of Domains
(c) (d)
7 T T T T T T T T T T T T
6l

Average Discovered Path Length

C0 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of Domains

(e)

Fig. 11. Path discovery and number of domains.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:18 . M. Shehab et al.
50 T T T T T T T T T T T T 1.8 T T T T T T T T T T T T
2 45k
o 45 1.6f
g
g 4T =14}
3 35f E
> Sz
@ 30f o
[0 0 1t
= o
o 251 a
s Zosf |
< 20} s}
§ EOG' : 1
L 15f E
o
Z g4t]
g 10}] 04
€
3 st 6—o—o—0—0° ~©- # Domains = 13 0.2r ~6- # Domain
—&- # Domains = 26 —& # Domains = 26
00 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Max Path Length (Pmax) Max Path Length (Pmax)
(a)
5 T T T T T T T T T T T T 16 T
451 14}
o 4}
s 812}
£ 35} o
S B 10}
3 of
(3 5]
>
_ézs- é 8
2 ot 5
5 2 5 6f
215t €
5 3 4
Z 1f
0.5t —o- # Domains = 13 T
—&- # Domains = 26 -8~ # Domains = 26
0 HEH 0 HEH HEHE
0 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 8 10 12 14 16 18 20 22 24 26
Max Path Length (Pmax) Max Path Length (Pmax)
(c) (d)

[

&l

o

N

Average discovered path length
()

-6~ # Domains = 13
—&- # Domains = 26
0 HEH R

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Max Path Length (Pmax)

(e)
Fig. 12. Path discovery and maximum path length Pmax.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments

5:19

5000 250
> —%— Pmax =6 —%— Pmax =6
© 4500 ©- Pmax=9 -6~ Pmax =9
5 -8 Pmax =12 -8 Pmax =12
g4000 r E 2001
8 3500¢ 3
b4 3
@ 3000 3 150+
g 3
5 2500F s
$ i3
B | 5 |
g 2000 100
g 8
¢ 1500F E
& 1000} < s0f
E
2 500f

0.3

0.4 0.5 0.6

0.2 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Neighborhood Probability Neighborhood Probability
(a) (b)
25 &) 600
—%— Pmax=6
—-©- Pmax=9
—&- Pmax =12
500
2 20f ®
g 3
8 < 400}
B 15} g
o
Q
§ L 3300f
2 o
S 1of 5
- 8 200 ;
o Qo
: £
Z s}, =
[—%— Pmax=6 100 1
—-©- Pmax=9 A
k -8 Pmax =12 M
8.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 3 0 0 0.6 0.7 0.8

Neighborhood Probability

(c)

(d)

Average Discovered Path Length

—%— Pmax=6
—-©- Pmax=9
—& Pmax =12

0.2 0.3 0.4

0.5

0.6 0.7 0.8

Neighborhood Probability

(e)
Fig. 13.

Path discovery and neighborhood probability p.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:20 o M. Shehab et al.

a fair share of the related research in the area of Web service security, with stan-
dards such as security assertion markup language (SAML) [SAML 2004] and
extensible access control markup language (XACML) [XACML 2005] having
been recently adopted. SAML defines an XML framework for exchanging au-
thentication and authorization information for securing Web services, and relies
on third-party authorities for provision of assertions containing such informa-
tion. However, SAML itself is not designed to provide support for managing
access paths and collaboration policies; it is in fact a complementary specifica-
tion. XACML is an XML framework for specifying context-aware access control
policies for Web-based resources. XACML does not provide a formal mechanism
to define cross-links and associations between different domains.

Another related set of emerging specifications consists of those outlined in the
WS security roadmap [WS-Secmap 2002]. The roadmap consists of a number of
component specifications, the main ones amongst these being WS-Security [WS-
Security 2002], WS-Policy [2004], and WS-Trust [2004]. WS-Security is a speci-
fication for securing a whole or parts of an XML message using XML encryption
and digital signature technology, and attaching security credentials thereto.
WS-Policy is used to describe the security policies in terms of their character-
istics and supported features. In fact, WS-Policy is a metalanguage which can
be used to create various policy languages for different purposes, as well as to
define an access control policy. Using the mechanisms provided by WS-Security
and according to the policy requirements dictated by WS-Policy, the Web ser-
vices trust (WS-Trust) defines a trust model that allows for the exchange of such
security tokens in order to enable the issuance and dissemination of creden-
tials within different trust domains, and to establish online trust relationships.
In fact, WS-Trust could be used to generate the cross-links between different
domains.

The models proposed in the roadmap have been directed primarily at the
authentication aspect of Web service security, with an emphasis on design-
ing secure messaging protocols to communicate security-relevant information
such as security tokens and characteristics of security policy. The specification
leaves room for the architecture to be augmented with custom authorization
models. Our current work uses the SOAP messaging technique and SOAP-
DSIG [SOAP-DSIG 2001] to implement the SOAP encapsulation mechanism
to enable mediator-free secure collaboration. To the best of our knowledge, ad-
dressing this aspect of Web service access control is a novel contribution.

7. CONCLUSIONS

In this article, we have shown how to achieve mediator-free collaboration us-
ing the current Web service standards where domains collaborate to forward
requests between themselves to enable the discovery of access paths and ser-
vices. We first presented a secure path discovery protocol that enables domains
to discover access paths to roles in other domains. The path discovery protocol
is based on encapsulating and forwarding SOAP messages between collabo-
rating domains. We presented a path authentication technique built on top of
the SOAP encapsulation and SOAP-DSIG standard. We showed that the path

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

Web Services Discovery in Secure Collaboration Environments . 5:21

authentication technique is resilient to several path attacks. Next, we proposed
a service discovery framework for mediator-free environments which is based
on private UDDI registries. The framework enables domains to discover ser-
vices in other domains and at the same time discovers authorizations to access
such services. Finally, we presented experimental results obtained from our
implementation of the presented SOAP encapsulation technique running on
actual Web servers.

ACKNOWLEDGMENTS

The research of Mohamed Shehab and Arif Ghafoor has been supported by the
sponsors of the Center for Education and Research in Information Assurance
and Security (CERIAS) at Purdue University, and the National Science Foun-
dation under NSF Grant IIS-0209111. During summer 2006, Mohamed Shehab
was supported by the IBM T.J Watson Labs.

REFERENCES

ArsarMANESH, H., GariTa, C., AND HERTZBERGER, L. 1998. Virtual enterprises and federated infor-
mation sharing. In Proceedings of the International Conference on Database and Expert Systems
Applications (DEXA).

ATLURI, V., CHUN, S., AND MazzoLENI, P. 2001. A Chinese wall security model for decentralized
workflow systems. In Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS), ACM Press, New York, 48-57.

Bertivo, E., FERRARI, E., AND ATLURI, V. 1999. The specification and enforcement of authorization
constraints in workflow management systems. ACM Trans. Inf. Sys. Security 2, 1 (Feb.), 65-104.

Bonarti, P., SApmvo, M., AND SUBRAHMANIAN, V. 1997. Merging heterogenous security orderings.
J. Comput. Secur. 5,1, 3-29.

BPEL4WS. 2002. Business process execution language for web services (BPEL4WS).
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

Brewer, D. anD Nasa, M. 1989. The Chinese wall security policy. In Proceedings of the IEEE
Symposium on Security and Privacy, 206—214.

Cox, D. anp KreGER, H. 2005. Management of the service-oriented-architecture life cycle. IBM
Syst. J. 44, 4.

CramPTON, J. 2003. On permissions, inheritance and role hierarchies. In Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS), ACM Press, New York, 85—
92.

FErratoLo, D., KunN D., aND CHANDRAMOULL, R. 2003. Role-Based Access Control. Artech House.

Dan, A., Davis, D., KEArNEY, R., KiNG, R., KELLER, A., KUEBLER, D., Lupwig, H., PoLAN, M., SPREITZER,
M., anD Yousser, A. 2004. Web services on demand: WSLA-Driven automated management.
IBM Syst. J. 43, 1 (Mar.), 136-158.

Dawson, S., QIAN, S., AND SAMARATI, P. 2000. Providing security and interoperation of heteroge-
neous systems. Distrib. Parallel Databases 8, 1, 119-145.

Dgsart, A. AND Awap, N. 2005. Special issue on adaptive complex enterprises. Commun. ACM 48,5
(May).

FErratoLO, D., SanDHU, R., GaVRILA, S., Kunn, D., AND CHaNDRAMOULI, R. 2001. Proposed NIST
standard for role-based access control. ACM Trans. Inf. Sys. Security 4, 3 (Aug.), 224-274.

Gong, L. aND Qian, X. 1994. The complexity and composability of secure interoperation. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, IEEE Computer Society, Washington,
DC, 190-200.

Gong, L. aND Qian, X. 1996. Computational issues in secure interoperation. IEEE Trans. Softw.
Eng. 22,1 (Jan.).

JonscHER, D. AND DittricH, K. 1994. An approach for building secure database federations. In
Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), Morgan
Kaufmann, San Francisco, CA, 24-35.

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

5:22 o M. Shehab et al.

L1, N., Bizri, Z., anD TripUNITARA, M. 2004. On mutually exclusive roles and separation of duty.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS).

Lupwic, H., BussLEr, C., SHAN, M., AND GREFEN, P. 1999. Cross-Organisational workflow manage-
ment and co-ordination WACC. 99 Workshop Rep. 20, 1.

MEepJaHED, B., BouGUETTAYA, A., AND ELMAGARMID, A. K. 2003. Composing web services on the
semantic web. VLDB J. 12, 4 (Nov.), 333-351.

MORGENSTERN, M., LunT, T., THURAISINGHAM, B., AND SPOONER, D. 1992. Security issues in federated
database systems: Panel contributions. In Results of the IFIP WG 11.3 Workshop on Database
Security V. North-Holland, 131-148.

MyERrson, J. 2004. Use SLAs in a web services context, part 1: Guarantee your web service with
a SLA. http://www-128.ibm.com/developerworks/library/ws-sla/.

RamnaTH, R. AND LaNDSBERGEN, D. 2005. IT-Enabled sense-and-respond strategies in complex
public Organizations. Commun. ACM 48, 5 (May), 58—64.

RBAC. 1996. Role based access control (RBAC). http://csrc.nist.gov/rbac/.

Rivest, R., SHAMIR, A., AND ADLEMAN, L. 1978. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 2 (Feb.), 120-126.

SAML. 2004. Security assertions markup language (SAML). http://xml.coverpages.org/saml.
html.

SanpHy, R., Covyng, E., FEINSTEIN, H., AND Youman, C. 1996. Role-Based access control models.
IEEE Comput. 29, 2 (Feb.), 38-47.

Scamipt, M., Hurcaison, B., LamBros, P., anp ParppEN, R. 2005. The enterprise service bus: Making
service-oriented architecture real. IBM Syst. J. 44, 4.

SCHNEIER, B. 1996. Applied Cryptography, 2nd ed. John Wiley.

SHAFIQ, B., JosHi, J., BERTINO, E., AND GHAFOOR, A. 2005. Secure interoperation in a multidomain
environment employing RBAC policies. IEEE Trans. Knowl. Data Eng. 17, 11, 1557-15717.

SHEHAB, M., BERTINO, E., AND GHAFOOR, A. 2005a. Secure collaboration in mediator-free environ-
ments. In Proceedings of the 12th ACM Conference on Computer and Communications Security,
(CCS), ACM Press, New York.

SueHAB, M., BErtiNO, E., AND GHAFOOR, A. 2005b. SERAT: Secure role mapping technique for
decentralized secure interoperability. In Proceedings of the ACM Symposium on Access Control
Models and Technologies (SACMAT), ACM Press, New York,

SOAP. 2003. Simple object access protocol (SOAP). http:/www.w3.org/TR/soap.

SOAP-DSIG. 2001. SOAP security extensions: Digital signature. http:/www.w3.org/TR/SOAP-
dsig.

UDDI. 2003. Universal description, discovery, and integration (UDDI). http://www.uddi.org.

VIMERCATI, S. AND SAMARATI, P. 1997. Authorization specification and enforcement in federated
database systems. J. Comput. Secur. 5, 2, 155-188.

WIEDERHOLD, G., BILELLO, M., AND DoNaHUE, C. 1998. Web implementation of a securtty mediator
for medical databases. In Proceedings of the IFIP 11th International Conference on Database
Security. Chapman and Hall, London, 60-72.

WS-Poricy. 2004. Web services policy framework (ws-policy). http:/www-128.ibm.com/
developerworks/webservices/library/specification/ws-polfram/.

WS-Secmap. 2002. Security in a web services world: A proposed architecture and roadmap.
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secmap/.

WS-Security. 2002. Web services security (ws security). http:/www-128.ibm.com/developer-
works/webservices/library/specification/ws-secure/.

WS-Security. 2006. OASIS web services security. http://www.oasis-open.org/committees/wss/.

WS-Trust. 2004. Web services trust language (ws trust). http:/www-128.ibm.com/developer-
works/library/specification/ws-trust/.

WSCI. 2002. Web service choreography interface (wsci). http://www.w3.org/TR/wsci.

WSDL. 2003. Web services description language (wsdl). http://www.w3.org/TR/wsdl.

XACML. 2005. Extensible access control markup language (xacml). http:/www.oasis-open.org/
committees/xacml/.

XML-S1e. 2002. XML-Signature syntax and processing. http:/www.w3.org/TR/xmldsig-core.

Received June 2006; revised January 2007; accepted April 2007

ACM Transactions on Internet Technology, Vol. 8, No. 1, Article 5, Publication date: November 2007.

