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Abstract— Proving ownership rights on outsourced relational application contexts for which data represent an imporésset,
databases is a crucial issue in today internet-based appéiion the ownership of which must thus be carefully enforced. This
environments and in many content distribution applicatiors. In  he case, for example, of weather data, stock market dateerpo
this paper, we present a mechanism for proof of ownership .,nqmntion, consumer behavior data, medical and sciedita.

based on the secure embedding of a robust imperceptible wa- . . . .
termark in relational data. We fgrmulate the watgrmarﬁing of Watermark embedding for relational data is made possible by

relational databases as a constrained optimization probia, and the fact that real data can very often tolerate a small amount
discuss efficient techniques to solve the optimization prdem of error without any significant degradation with respecttteir

and to handle the constraints. Our watermarking technique 8 usability. For example when dealing with weather data, ghan
resilient to watermark synchronization errors because it 1ses a some daily temperatures of 1 or 2 degrees is a modificatian tha
partitioning approach that does not require marker tuples. Our leaves the data still usable.

approach overcomes a major weakness in previously proposed To date only a few approaches to the problem of watermarking

watermarking techniques. Watermark decoding is based on a . .
threshold-based technique characterized by an optimal theshold  '€lational data have been proposed [1], [23]. These teabsiq

that minimizes the probability of decoding errors. We imple- however, are not very resilient to watermark attacks. Is gaper,
mented a proof of concept implementation of our watermarkiry we present a watermarking technique for relational data tha
technique and showed by experimental results that our techique is highly resilient compared to these techniques. In paldic
is resilient to tup|e deletion, alteration and insertion atacks. our proposed technique is resilient to tuple deletion,ra‘lten’
Index Terms— Watermarking, Digital Rights, Optimization. and insertion attacks. The main contributions of the paper a
summarized as follows:
« We formulate the watermarking of relational databases as
a constrained optimization problem, and discuss efficient
HE rapid growth of internet and related technologies has techniques to handle the constraints. We present two tech-
offered an unprecedented ability to access and redistribut  niques to solve the formulated optimization problem based

. INTRODUCTION

digital contents. In such a context, enforcing data owriprih on genetic algorithms and pattern search technigues.
an important requirement which requires articulated swhst « We present a data partitioning technique that does not depen
encompassing technical, organizational and legal asgaéis on marker tuples to locate the partitions and thus it isiesil

Though we are still far from such comprehensive solutions, to watermark synchronization errors.
in the last years watermarking techniques have emerged as a& We develop an efficient technique for watermark detection
important building block which plays a crucial role in adsking that is based on an optimal threshold. The optimal threshold
the ownership problem. Such techniques allow the owner of is selected by minimizing the probability of decoding error
the data to embed an imperceptible watermark into the datas With a proof of concept implementation of our water-
A watermark describes information that can be used to prove marking technique, we have conducted experiments using
the ownership of data, such as the owner, origin, or redipien both synthetic and real-world data. We have compared our
of the content. Secure embedding requires that the embedded watermarking technique with previous approaches [1], [23]
watermark must not be easily tampered with, forged, or resdov and shown the superiority of our technique with respect to
from the watermarked data [26]. Imperceptible embeddingmae all types of attacks.
that the presence of the watermark is unnoticeable in tha. dat The paper is organized as follows. Section Il discusses the
Furthermore, the watermark detection is blinded ,thatiseither related work which includes the available relational daszb
requires the knowledge of the original data nor the watekmasvatermarking techniques and highlights the shortcomings o
Watermarking techniques have been developed for vide@éma these techniques. An overview of our watermarking techmiqu
audio, and text data [24], [12], [15], [2], and also for scdt® s described in Section Ill, where an overview of the watakma
and natural language text [7], [3]. encoding and decoding stages is presented. Section IVsdiesu
By contrast the problem of watermarking relational data hase data partitioning algorithm. The watermark embeddilyp-a
not been given appropriate attention. There are, howevanym rithm is described in Section V. Sections VI and VII discuss
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Fig. 1. Stages of watermark encoding and decoding.

selected attributes of a selected subset of tuples. Thimigpgee is transformed into a watermarked versian, by applying a
does not provide a mechanism for multibit watermarks; exste watermark encoding function that also takes as inputs aesecr
only a secret key is used. For each tuple, a secure messkegg K only known to the copyright owner and a watermark
authenticated code (MAC) is computed using the secret kdy aWw. Watermarking modifies the data. However these modification
the tuple’s primary key. The computed MAC is used to seleare controlled by providing usability constraints referm® by
candidate tuples, attributes and the LSB position in thectetl the setG. These constraints limit the amount alterations that can
attributes. Hiding bits in LSB is efficient. However, the eahark be performed on the data, such constraints will be discussed
can be easily compromised by very trivial attacks. For exampdetail in the following sections. The watermark encoding ba
a simple manipulation of the data by shifting the LSB’'s oneummarized by the following three steps:
position easily leads to watermark loss without much damagtep E1. Data set partitioning: by using the secret kég
to the data. Therefore the LSB-based data hiding techniguetlie data setD is partitioned intorm non-overlapping partitions
not resilient [21], [8]. Moreover, it assumes that the LSBsbh  {So,..., Sm—1}-
any tuple can be altered without checking data constreffitsple  Step E2.Watermark embedding: a watermark bit is embedded in
unconstrained LSB manipulations can easily generate imathes each partition by altering the partition statistics whitél seri-
results such as changing the age from 20 to 21. Li et al. [1B]ing the usability constraints id. This alteration is performed
have presented a technique for fingerprinting relation#h ¢y by solving a constrained optimization problem.
extending Agrawal et al.'s watermarking scheme. Step E3.Optimal threshold evaluation: the bit embedding statis-
Sion et al. [23] proposed a watermarking technique that eries are used to compute the optimal threshbfdthat minimizes
beds watermark bits in the data statistics. The data manititiy the probability of decoding error.
technique used is based on the use of special marker tuplel wh The watermarked versioy, is delivered to the intended
makes it vulnerable to watermark synchronization errossiting recipient. Then it can suffer from unintentional distonsoor
from tuple deletion and tuple insertion; thus such techmidgi attacks aimed at destroying the watermark information.eNbat
not resilient to deletion and insertion attacks. Furtheam&ion even intentional attacks are performed without any knogdedf
et al. recommend storing the marker tuples to enable theddecoK's or D, since these are not publicly available.
to accurately reconstruct the underlying partitions; havethis Watermark decoding is the process of extracting the emlakdde
violates the blinded watermark detection property. A dethi watermark using the watermarked dataBgf, the secret key<s
discussion of such attacks is presented in Section VIII. Tknd the optimal threshol@™. The decoding algorithm is blind as
data manipulation technique used to change the data w&mtisthe original data seb is not required for the successful decoding
does not systematically investigate the feasible reginstead a of the embedded watermark. The watermark decoding is divide
naive unstructured technique is used which does not make iR® three main steps:
of the feasible alterations that could be performed on tha déStep D1. Data set partitioning: by using the data partitioning
without affecting its usability. Furthermore, Sion et atoposed algorithm used irE1l, the data partitions are generated.
a threshold technique for bit decoding that is based on twwep D2.Threshold based decoding: the statistics of each partition
thresholds. However, the thresholds are arbitrarily chogi¢hout —are evaluated and the embedded bit is decoded using a titesho
any optimality criteria. Thus the decoding algorithm exisib based scheme based on the optimal threstivld
errors resulting from the non-optimal threshold selectieven Step D3.Majority voting: The watermark bits are decoded using
in the absence of an attacker. a majority voting technique.
Gross-Amblard [11] proposed a watermarking technique for In the following sections we discuss each of the encoding and
XML documents and theoretically investigates links betweedecoding steps in detail.
query result preservation and acceptable watermarkiegadilbns.
Another interesting related research effort is to be foungiLir] IV. DATA PARTITIONING
where the authors have proposed a fragile watermark testniq In this section we present the data partitioning algoritinat t

to detect and localize alterations made to a databaseorelaith ~ partitions the data set based on a secret Kgy The data seD
categorical attributes. is a database relation with schem® P, Ay,..., A, _1), where

P is the primary key attributeAg,...,A,_1 are v attributes

Il. A PPROACHOVERVIEW which are candidates for watermarking ajid| is the number

Figure 1 shows a block diagram summarizing the main corof tuples inD. The data seD is to be partitioned inton non-
ponents of the watermarking system model used. A dataDsetoverlapping partitions namelySy,...,S,—1}, such that each
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partition S; contains on averag% tuples from the data seb. Symbol | Description
Partitions do not overlap, that is, for any two partitiofis and m Number of data partitions
S; such thati # j we haveS; N S; = {}. For each tuple- € D £ Minimum partition size
the data partitioning algorithm computes a message aithéed w Watermark bit sequencfh;_q,...,bo}
code (MAC) which is considered to be secure [22] and is giyen b ! Length of watermark bit sequence
H(Ks||H(r.P||Ks)), wherer. P is the primary key of the tuple, Xmae | Maximization embedding statistics
H() is a secure hash function afjds the concatenation operator. Xmin | Minimization embedding statistics
Using the computed MAC tuples are assigned to partitions. Fo S; Data partition, numeric data vector R"
a tupler its partition assignment is given by |Si],n» | Length of vectors;

K Secret Key

partition(r) = H(Ks||H(r.P||Ks)) mod m T* Optimal decoding threshold

G; Usability constraints
Using the property that secure hash functions generateromif A, Manipulation vector ink”
distributed message digests this partitioning techniqueverage Notation

pIaces'% tuples in each partition. Furthermore, an attacker”
cannot predict the tuples-to-partition assignment withthe
knowledge of the secret keis and the number of partitions
m which are kept secret. Keeping secret is not a requirement. ) . . i .
However, keeping it secret makes it harder for the attacker t !N this section we describe the watermark embedding afgarit
regenerate the partitions. The partitioning algorithm ésatibed Py formalizing the bit encoding as a constrained optimarai
in Figure 2. problem. Thgn we propose a genetic allglonthm and a pattern
Though the presence of a primary key in the relation beirﬁfarc.h technique that can bg used to. eff|C|e.ntI.y sglve suth op
watermarked is a common practice in relational data, oun-tec |zat|qn prol?lem. The S.eIeCt'on of Wh'.Ch ‘?pt'”?'za“"” algm
nique can be easily extended to handle cases when the nela{l%us_e is decided ac_cordlng_to the application time and jsiog .
has no primary key. Assuming a single attribute relatiore tHequ_wement; as will be discussed further. A_t the en_d of this
most significanty bits (MSB) of the data could be used as gection we give the Qvera!l watermark embedding alg.orltmmr_
substitute for the primary key. The use of the MSB assumds t%at.ermarkmg technlq.ue IS ‘?ble to. handle tuples with ”.““"“p
the watermark embedding data alterations will unlikelerlathe attributes as we wil d.'SCUSS in Section VII. Howeyer, to pimy
MSB x bits. However, if too many tuples share the same MSE‘e fo_IIoww_lg dlscu55|qn we assume the tuples in a partlﬂ‘gn
x bits this would enable the attacker to infer information wbo contain a single numeric attrlbut_e. In such a case eacttiparsl;
the partition distribution. The solution would be to selgcthat C‘in be represented as a numeric data Ve&{GF [s;1, ..., sin] €
minimizes the duplicates. Another technique, in case ofaion R
with multiple attributes is to use identifying attributessiead of
the primary key; for example in medical data we could use the Single Bit Encoding
patient full name, patient address, patient date of birth. Given a watermark bib;, and a numeric data vectdf; —
Our data partitioning algorithm does not rely on specialkear [si1,...,sin] € R" the bit encoding algorithm maps the data
tuples for the selection of data partitions, which makessilient yector S; to a new data vectoSl-W = S; + A;, where A; =
to watermark synchronization attacks caused by tupleidelend (A, ... A;,] € R" is referred to as the manipulation vector.
tuple insertion. By contrast, Sion et al. [23] use speciatk®@ The performed manipulations are bounded by the data usabili
tuples, having the property thaf (Ks||H (r.P||Ks)) mod m =  constraints referred to by the s€; = {g;1,...,gip}. The
0, to partition the data set. In Sion's approach a partition incoding is based on optimizing encoding function refeted
defined as the set of tuples between two markers. Markedbagg thehiding functionwhich is defined as follows:
techniques not only use markers to define partitions but ®so Definition 1: A hiding function©®+ : R — R, whereY is the
define boundaries between the embedded watermark b|tS£U(§'ét of secret parameters decided by the data owner.
technique is very fragile to tuple deletion and insertioe oithe  The sefr can be regarded as part of the secret key. Note that when
errors caused by the addition and deletion of marker tuflBs  the hiding function is applied ts; + A, the only variable is the
attack is discussed in more detail in Section VIII. manipulation vector\;, while S; and Y are constants. To encode
bit b; into setS; the bit encoding algorithm optimizes the hiding

V. WATERMARK EMBEDDING

Al qori thim  oet.partiti function ©+(S; + A;). The objective of the optimization problem
| ngut: Dat agze'fag ngcret Key Ks, Nunber of of maximizing or minimizing the hiding function is based dret
partitions m bit b; such that if the bith; is equal tol then the bit encoding
Qutput: Data partitions So,...,Sm—1 algorithm solves the following maximization problem:

1. fo,...,sﬁkl o { MaX oy (S +4y)

2. or each Tuple r e D, i )

3. partition(r) « H(Ks||H(r.P||Ks)) mod m subject to G

4. insert r into Spyartition(r) However, if the bity; is equal to0, then the problem is simply

5. return So,...,8m-1 changed into a minimization problem. The solution to thei-opt

mization problem generates the manipulation vectprat which
O+ (S; + A}) is optimal. The new data set!" is computed as
S; + AY. Using contradicting objectives, namely maximization

Fig. 2. Data partitioning algorithm
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for b; = 1 and minimization forb; = 0, ensures that the valuesniques when optimizing the hiding function as will be dissed
of ©y(S; + A}) generated in both cases are located at maximial the subsequent sections.
distance and thus makes the inserted bit more resilientdoks,
in particular to alteration attacks. \

Figure 4 depicts the bit encoding algorithm. The bit encgdin ref
algorithm embeds bik; in the partltlon% it || |s.greate.r than Fig. 5. The distribution of the sef; + A; on the number line and the tail
€. The value of¢ represents the minimum partition size. Th@ntries circled.
maxi m ze andmi ni m ze in the bit encoding algorithm opti-
mize the hiding functior®~ (S; + A7) subject to the constraints  For the sake of comparison in this paper, we use the statistic
in G;. The maximization and minimization solution statistice arbased hiding function used by Sion et al [23]. The mean and
recorded for each encoding step Mmaz, Xmin respectively variance estimates of the new st = S, + A; are referred to
as indicated in lines 4 and 7 of the encoding algorithm. Theggu(S#Ai) and U(2S1+A1) respectively; for short we will usg
statistics are u_sed to (_:ompute optimal decoding paramasessll  5nq,2 We define the reference point asf = u + ¢ x o, where
be discussed in Section VI. c € (0,1) is a secret real number which is part of the et
The data points ir5; + A; that are aboveef are referred to as
Al gorithm encode_single_bit thettail” entries as illustrated by Figure 5. The hiding function
Input: Data set S;, Bit b;, Constraints set G, O, is defined as the number of tail entries normalized by the
Secret paraneters set Y, Statistics Xmaz, Xmin cardinality of S;, also referred to as the normalized tail count. It
Qutput: Data set S+ A7 is computed as follows:

if (|Si|<& then return S; 1
if (bj==1) then O.(S; +A;) = = T LA .
maxi mi 26(O+(S; + As)) subj to Gi (S i) n Zl {sij+Ai;>ref}
insert ©y(S;+Af) into Xmax I=
else (©x(S: 1+ A) subj to G where,n is the cardinality ofS; and 1n is the indicator function
m nimze(©y(S; + A;)) subj to G; - .
insert ©y(S; + A% iNto Xpm defined as follows:
return S; + A7

NoOhA~ONE

1 [ 1 if condition =TRUE,
{condition} = (  otherwise.

Note that the referenceef is dependent on both and s which
means that it is not fixed and dynamically varies with theistias

The set of usability constraints; represents the bounds on S;+ A;. Also note that, the normalized tail coudL(S; + A;)
the tolerated change that can be performed on the elemessts Ofdepends on the distribution o, + A; and the dynamia-ef
i :

These constraints describe the feasible space for the oiatigm The objective function®.(S; + A;) is nonlinear and nondif-

vectpr AZ for each bit encoding step. The_s_e constralr_lts 3f&rentiable, which makes the optimization problem at hand a
application and data dependent. The usability constraames nonlinear constrained optimization problem. In such proid

S|n(1j|.lar .to the consdtrglgts enizprﬁed qnlwatermarkt:ng z:]tgms for traditional gradient-based approaches turn out to be Iicaiybe.
audio, images and video which mainly require that the watekm , o5\ e this optimization problem we propose two technique

is not detectable by the human auditory ar_1d visual system [23se4 on Genetic Algorithm and Pattern Search respectively
[12], [15], [8]. For_ example, interval _constralnts CO_U|d 0Eed 10 116 choice of the technique to use depends on the application
control the magnitude of the alteration f;;, that is, processing requirements. Solving the optimization probtbes
A?}i" < Ay < AT not necess_arily require _to find a global solution becaus_émjnd
T such solution may require a large number of computations. Ou
Another example of usability constraints are classificatiomain goal is to find a near optimal solution that ensures that
preserving constraints which constrain the encodingatiters to  solutions of the minimization 0®.(S; + A;) and maximization
generate data that belong to the same classification asitfieabr 0f ©(5;+A;) are separated as far as possible from each other. As
data. For example, when watermarking age data the restdts ayve will discuss further, GA could be used in order to deteamin
the alteration should fall in the same age group e.g. “psich global optimal solutions by trading processing time, wittgtern
(0-6 years), “child” (7-13), “teenager” (14-18), “young hea(19- Search could be used to provide a local optimal solution auth
21), “adult” (22+), these constraints can be easily desdrising trading processing time. Note that these optimization riggles
interval constraints as they are similar to defining bounds avill function for simpler hiding functions. However, hagna
A;. Another interesting type of constraints may require that t Simple linear hiding function makes it easier to attack. For
watermarked data set maintain certain statistics. For piathe €xample, if the average is used as the hiding function, s¢ase
mean of the generated data set be equal to mean of the origii@ optimization problem will merely be adding or subtragta
data set, in such a case the constructed constraint is obthre f constant term to the data vector to maximize or minimize the

" average.
Z Aij =0
j=1

Several other usability constraints could be devised ddipgron A genetic algorithm (GA) is a search technique that is based
the application requirements. These constraints are ddrl the on the principles of natural selection or survival of theeftt
bit encoding algorithm by using constrained optimizatiesh: Pioneering work in this field was conducted by Holland in

Fig. 4. Bit encoding algorithm

B. Genetic Algorithm Technique
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the 1960s [13], [6]. Many researchers have refined his Initia > ; A;; = 0 thené(gij, A;) =| -7, Ay; || For a detailed
approach. Instead of using gradient information, the GAsuke discussion of penalty based techniques the interesteceréad
objective function directly in the search. The GA searches treferred to [20], [5].

solution space by maintaining a population of potentialisohs.

Then, by using evolving operations such as crossover, iaotat 1
and selection, the GA creates successive generations ufost 09 1
that evolve and inherit the positive characteristics ofrtharents osl ]

and thus gradually approach optimal or near-optimal smhsti
By using the objective function directly in the search, Géan
be effectively applied in nonconvex, highly nonlinear, qbex

problems [10], [5]. GAs have been frequently used to solve 051 ]
combinatorial optimization problems and nonlinear praidevith 0.4 .
complicated constraints or nondifferentiable objectiuactions. 03l |

A GA is not guaranteed to find the global optimum; however it
is less likely to get trapped at a local optimum than traddio
gradient-based search methods when the objective funistioot
smooth and generally well behaved. A GA usually analyzes a 0
larger portion of the solution space than conventional wesh

and is therefore more likely to find feasible solutions inMilga Fig. 7. ShowsSigmoid(,, ) wherer =0 anda = {1,2,8}.

constrained problems.

The feasible sef; is the set of values of\; that satisfy all A GAiis less likely to get stuck in local optima. However, a GA
constraints inG;. GAs do not work directly with points in the requires a large number of functional evaluations to caje/é¢o a
set(;, but rather with a mapping of the pointsdn into a string global optimal. Thus we recommend the use of GA's only when
of symbols calledchromosomesA simple binary representation the processing time is not a strict requirement and watesimgr
scheme uses symbols froff, 1}; each chromosome i symbols is performed offline. For faster performance we recommesd th
long. As an example the binary chromosome representing thee of pattern search techniques discussed in the nexosecti
vector A; = [Aj,...,A;,] is indicated in Figure 6. Note
that each component of; uses L/n bits, wheren = |S;|.
This chromosome representation automatically handlesniailt
constraints onA;. For example ifA;; can only take values Pattern search methods are a class of direct search methods

in the interval [l;;, h;;], then by mapping the integers in thefor nonlinear optimization. Pattern search methods [4}] Have
interval [0, 2%/™ — 1] to values in the intervall;;, h;;] via simple been widely used because of their simplicity and the fact tha
translation and scaling, this ensures that, whatever tipesaare they work well in practice on a variety of problems. More
performed on the chromosome, the entries are guaranteedyto §€Cently, they are provably convergent [16], [9]. Patteearsh

C. Pattern Search Technique

within the feasible interval. starts at an initial point and samples the objective fumctb a
predetermined pattern of points centered about that pathttive
0101010101010101 1111111111111111 ---0011001100110011 goa] of producing a new better iterate. Such moves are ssferr
A Ajo Ain to as exploratory moves, Figure 8 shows an example pattern in
Fig. 6. Binary chromosome representing R2. If such sampling is successful (i.e.,produces a new better

iterate), the process is repeated with the pattern centavedt

Each chromosome has a corresponding value of the objectil§ €W best point. If not, the size of the pattern is reduceti a
function, referred to as thitnessof the chromosome. To handlethe objective function is again sampled about the currefitpo
other types of constraints we penalize the infeasible chezmes FOr @ detailed discussion on pattern search refer to [1§],Ti9

by reducing their fitness value according to a penalty famcti improve the performance of pattern search the objectivetim

®(A,;), which represents the degree of infeasibility. Withouslos®¢ (i +4) is approximated by smooth sigmoid functions. The

of generality, if we are solving the maximization problem irPPiective function is approximated as follows:

Section V-A with constraint§/; = {g;1, ..., gip}, then the fitness R 13
function used i9.(S; + A;) + A®(4;), where A € R~ is the Oc(Si + A¢) = —~ > Sigmoid(a,, rep)(sij + Aij)
penalty multiplier and is chosen large enough to penalize th j=1
objective function in case of infeasibl®;. The penalty function where Sigmoid,, . (x) is a sigmoid function with parameters
®(A;) is given by: (a,7), shown in Figure 7, is defined &% — (1 4+ ¢®(@~7)~1),

P Constraints could be handled using the techniques disdusse

O(A) =) g5(A) earlier. However, pattern search can easily handle thetrednis

j=1 by limiting the exploratory moves to only the directions ttha

where end up in the feasible space; thus ensuring that the gederate

solution is feasible. For a more detailed discussion refdd 6].

The systematic behavior of pattern search and the adaptable
pattern size leads to the fast convergence to optimal fleasib
whereg(gi;, A;) € R represents the amount of infeasibility withsolutions. However, pattern search is not guaranteed to dind
respect to the constraimgt;. For example if the constrainf;; is global optimum. This problem can be overcome by starting the

0 if A; is feasible w.r.ty;;

TA) =
9i5(Bi) = { d(9i5,D;) otherwise
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(o] e} ] ] ] . . . .
inserted into watermarked data defy . StatisticS(Xmaz, Ximin)
are collected after each bit embedding and are used by the
get_optimal_threshold algorithm to compute the optimal de-
° ° coding threshold; these details will be discussed furtinethie
following sections.
(o) ]
Al gorithm embed-watermark
Input: Data set D, Watermark W = {bo,...,b;_1},
Secret Key K, Number of partitions m
) o Qut put: Waternarked data set Dy, Optinal
Decodi ng Threshold T*
1. DWyxmawamin — {}
o o ° o o 2. S0, .+, Sm—1 < get_partitions(D, Ks, m)
3. for each Partition Sg
Fig. 8. Example pattern for coordinate searciiif, as part of a larger grid. 4. i+—k mod
5. SXV «— encode_single_bit(b;, Sk, ¢, Xmaz, Xmin)
6. insert S into Dy
algorithm from different initial feasible points. For theake g' rTet‘u_r?ftbomm;{;th”ShOId(X”““”7X"“'")
of comparison, we conducted an experiment using normally] ' v
distributed data where the tail coudt.(S; + A;) was maximized Watermark embedding algorithm

L . L Fig. 10.
and minimized using both pattern search and GA with interval’

constraints. Both algorithms were restricted to use anlegua-
ber of objective function evaluations. Figure 9 reports régults
of this experiment, which shows that pattern search geserat
better optimized tail counts, and thus better separatidwed®n
the maximization and minimization results. However, if G& i
given more functional evaluations converges to globalnopth

VI. DECODING THRESHOLDEVALUATION

In the previous sections we discussed the bit encoding tech-
nique which embeds a watermark Bit in a partition S; to

solutions.
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generate a watermarked partitisfi” . In this section, we discuss
the bit decoding technique which is used to extract the endxkd
watermark bitb; from the partition 5}V. The bit decoding
technique is based on an optimal thresh@ld that minimizes
the probability of decoding error. The evaluation of suctiropl
threshold is discussed in this section.

Presented with the data partitisi)” the bit decoding technique
computes the hiding functio®(S}") and compares it to the
optimal decoding threshol@™* to decode the embedded bit If
Oy (5 is greater thari™ then the decoded bit is otherwise
the decoded bit i90. For example, using the hiding function
described in Section V-A the decoding technique computes th
normalized tail count of!" by computing the reference:f and
by counting the number of entries ifi!" that are greater than

&
>
>
>
>
>
>
>

ref. Then the computed normalized tail count is compared to
T*, see Figure 11. The decoding technique is simple; however,
the value of the threshol@™ should be carefully calculated so
as to minimize theprobability of bit decoding erroras will be
discussed in this section.

Data Set

Fig. 9. Comparison between GA and Pattern search (PS) faatine number
of functional evaluations.

Bit=0 ‘ Bit=1 ‘
0 T 1

v

D. Watermark Embedding Algorithm

A watermark is a set of bits W = b,_1, ..., bo that are to be Fig- 11. Threshold based decoding scheme.
embedded in the data partitiofiSy, ..., S;,—1}. To enable mul-
tiple embeddings of the watermark in the data set the watrma The probability of bit decoding erroiis defined as the prob-
length is selected such thdt<« m. The watermark embedding ability of an embedded bit decoded incorrectly. The deapdin
algorithm embeds a bif; in partition S;, such thatk mod [ = 4. thresholdT™* is selected such that it minimizes the probability of
This technique ensures that each watermark bit is embeld@gd decoding error. The bit embedding stage discussed in $evtio
times in the data seD. The watermark embedding algorithmA is based on the maximization or minimization of the tail
is reported in Figure 10. The watermark embedding algorithoount; these optimized hiding function values computedngdur
generates the partitions by callingt_partitions, then for each the encoding stage are used to compute the optimum thregtiold
partition S, a watermark bith; is encoded by using the singleThe maximized hiding function values corresponding/toequal
bit encoding algorithm(encode_single_bit) that was discussed to 1 are stored in the seX,,q.. Similarly the minimized hiding
in the previous sections. The generated altered partiéinis function values are stored ii,,;,, (see algorithm in Figure 4).
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Fig. 12. (a) Shows (z|be = 0), f(x|be = 1) and the computed™ = 0.24142. (b) Gaussian approximation and experimental valueBof. for different
decoding thresholdT') values.

—— Gaussian Approximation
X Experimental Result
T

Let P..r, Py, and P, represent the probability of decodingorder necessary conditioﬁj—% > 0) is met.

error, the probability of encoding a bit = 0 and the prob&pitif

encoding a bit = 1 respectively. Furthermore,dgtb,, and f(x) 08 — 0%, 42 pooT — piog ™
represent the encoded bit, decoded bit, and a probabilitgitye 20203 olo? +

function respectivelyP.,, is calculated as follows:

ln(?gl) piop - l;%U% -0
100 20001
Per'r :P(bd:O,be = 1)+P(bd: l,be :0)
= P(by = Olbe = 1)Py + P(bg = 1|be = 0) Py From the above analysis the selection of the optiffiialis based
— P(z < Tlbe = 1)P, + Pz > Tlbe = 0)Ry on the collected output statistics of the watermark embepdi
o ¢ .Ooe algorithm. The optimal thresholf* minimizes the probability of
—p / F(zlbe = 1)dz + Po/ F(z|be = 0)dz decoding error and thus enhances the strength of the endbedde
J—o0 T watermark by increasing the chances of successful decodiong
o N ) ) show the high dependency of the probability of decodingreanal
To minimize the probability of decoding erroPe;) with respect  he choice of decoding threshald, we conducted an experiment
to the threshold" we take the first order derivative @, with sing real lifé¢ data with usability constraints af0.5% of the
respect tdl" to locate the optimal threshold”, as follows: original data value. The histograms and the Gaussian estma
of Xmaez and X,,;, obtained from the experiment are reported
=P _/ f(z|be = 1)dx + Py—= / f(x|be = 0)dx N Figure 12(a). The optimal computed thresh@ld is indicated
or by the dotted vertical line. As we can see from Figure 12(a) th
= P1f(T|be =1) — Pyf(T|be = 0) two distributions are far apart which is a direct result ahgsthe
competing objectives fal; equal to 1 and 0. Figure 12(b), shows
the probability of decoding error for different values oéttiecod-
The distributionsf (z|b. = 0) and f(z|be = 1) are estimated from ing threshold, which shows the presence of an optimal tiofdsh
the statistics of the sets,,,;,, and Xma. respectively. From our that minimizes the probability of decoding error. Furthere
experimental observations of,,;,, and X,u.. the distributions Figure 12(b) shows both the Gaussian approximation and the
f(z|be = 0) and f(z|be = 1) pass the chi-square test of normalityeXperimental values of the probability of decoding errohiah
and thus can be estimated as Gaussian distributidfs),co) Shows that the Gaussian approximation matches the expgame
and N (u1,01) respectively. However, the following analysis carfesults.
still be performed with other types of distributions, could be ~ The probability of decoding error is also dependent on the

a‘PET"I‘
oT

estimated by% and P, = 1 — Py. Substituting the Usability constraints. If the usability constraints arghti the
Gaussian expressions fg(z|b. = 0) and f(z|b. = 1) the first amount of alterations to the data getmay not be enough for the
order derivative ofP.,.. is as follows: watermark insertion. Figure 13(a) shows the effect of vayythe
usability constraints on the separation betwgén|b. = 0) and
OPorr P (T — p1)? Py (T — uo)?,  f(z|be = 1). Note that as the usability constraints is increased
T~ ooz ) T et ) this all ding data manipulation and thus mak
o1V2m 20§ o0V2r 202 is allows more encoding data manipulation and thus makes

f(z|be = 0) and f(xz|be = 1) more separated. Figure 13(b)
By equating the first order derivative df..» to zero we get shows the minimum probability of decoding error computeidgis
the following quadratic equation the roots of which incluthe the optimal threshold’™ for data subject to different usability
optimal threshold7T* that minimizes P.,,.. The second order
derivative of P.,- is evaluated afl’”* to ensure that the second !Description of such data is discussed in Section IX
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Fig. 13. (a)Showsf(z|be = 0), f(z|be = 1) andT™* for different usability constraints. (b)The minimuf.,., at 7* for different usability constraints.

. . , bit 5 4 3 2 1 0
constraints. The overall watermark probability of decgdarror "
is reduced by embedding the watermark multiple times in ita d
set, which is basically a repetition error correcting code. " o 1 1 o 1 o
VII. WATERMARK DETECTION Wi X 0 1 0 1 X
In this section we discuss the watermark detection algorith w 0 N 0 0 1 0
which extracts the embedded watermark using the secrempara 2
ters includingKs, m, &, ¢, T. The algorithm starts by generating W 0 1 1 X 0 0
the data partitiong Sy, . .., S;,—1} using the watermarked data
setDyy, the secret key<s and the number of partitions as input
to the data partitioning algorithm discussed in Section Bdch Wieet | O 1 1 0 1 0
partition encodes a single watermark bit; to extract the esdbd

bit we use the threshold decoding scheme based on the optimal
threshold" that minimizes the probability of decoding error asig 14. An example illustrates the majority bit matching-aing algorithm
discussed in Section VI. If the partition size is smallemtiyahe for a watermarki’ = 011010, with ”/ x’’ representing the erasures.
bit is decoded as an erasure, otherwise it is decoded uséng th
threshold scheme.

As the watermarkV = b,_1, ..., by is embedded several timesPhase, the watermark is extracted separately from eacheaf th
in the data set each watermark bit is extracted several tivhese  attributes using the discussed watermark detection agoyithen
for a bit b; it is extracted from partitiors, wherek mod [ =i. Majority voting is used to detect the final watermark.
The extracted bits are decoded using the majority votinigriegcie
which is used in the decoding of repetition error correctinges. VIIl. ATTACKER MODEL
Each bitb; is extractedTt times so it represents g7 |-fold In this section we discuss the attacker model and the pessibl
repetition code [19]. The majority voting technique is $itated malicious attacks that can be performed. Assume, Alice és th
by the example in Figure 14. The detailed algorithm used fowner of the data sed and has marked by using a watermark
watermark detection is reported in Figure 15. W to generate a watermarked data Begt. The attacker Mallory

In case of a relation with multiple attributes the watermarkan perform several types of attacks in the hope of corrgptin
resilience can be increased by embedding the watermark ewen deleting the embedded watermark. A robust waterngarkin
multiple attributes. This is a simple extension to the pnémg technigue must be able to survive all such attacks.
encoding and decoding techniques in which the watermark isWe assume that Mallory has no access to the original data
embedded in each attributed separately. Férastribute relation, set D and does not know any of the secret information used
the watermark bit is embedded in each of #fmlumns separately in the embedding of the watermark, including the secret key
using the bit embedding technique discussed in Section V-K, the secret number of partitions, the secret constant,
The use of multiple attributes enables the multiple embegidif the optimization parameters and the optimal decoding hiotds
watermark bitss times in each partition, such embedding can b&*. Given these assumptions Mallory cannot generate the data
considered as an innérfold repetition code [19]. For decoding partitions {So, ..., Sm,»—1} because this requires the knowledge
purposes the statistic¥,,., and X,,;, are collected for each of both the secret keyKs and the number of partitionsn,
attribute separately. The optimal threshold is computedech thus Mallory cannot intentionally attack certain waterknaits.
attribute using the collected statistics to minimize thebability Moreover, any data manipulations executed by Mallory canno
of decoding error as discussed in Section VI. In the decoditig checked against the usability constraints because thieair
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(a) Watermarked dataset

Fig. 16.

(b) After deletion attack

(c) After insertion attack

Watermarked dataset subject to the deletion arettios attacks repectively, and their corresponding nitgjomoting maps. Grey shaded cells

represent the original marker tuples and the black cellsesgmt the added marker tuples.

Al gorithm detect-watermark
I nput: Watermarked data set Dy, m, ¢, &,
T*, Watermark |length [
Qutput: Detected waternmark Wp
1. set ones[0,...,1—1] <0
2. set zeros[0,...,l—1] <0
3. S0, ..., Sm—1 <« get_partitions(Dw , Ks, m)
4. for j=0,....m—1
5. if ISy >¢
6. i+ j mod 1
7. value — O(S;,0,c)
8. if walue >T*
9. ones[i] < ones[i] + 1
10. el se
11. zeros[i] « zeros[i] + 1
12. for 57=0,...,1—1
13. i f ones[j] > zeros[j]
14. Wp[j] — 1
15. el se if ones[j] < zeros[j]
16. Wplj] < 0
17. el se
18. WD[j} — X
19. return Wp

K,

Fig. 15. Watermark detection algorithm

partition loses>- tuples. The watermarking techniques available
in literature rely on special tuples, referred to as markgies.
Agrawal et al. [1] use marker tuples to locate the embedded bi
and Sion et al. [23] use marker tuples to locate the start and
end of data partitions. The embedded watermark is a stream of
bits where the marker tuples identify the boundaries beatwee
these bits in the stream. The successful deletion of mavkgdes
deletes these boundaries between the bits of the waterrtmegkrs
which makes such marker based watermarking techniques [1],
[23] susceptible to watermark synchronization error. B@neple,
using the watermarking technique presented by Sion et 8], [2
Figure 16(a) shows an example partitioned data set and the
corresponding majority voting map used to decode the endzkedd
watermark. The marker tuples are represented by the shaded
cells; these markers are used to identify the start and end of
each partition. The embedded bit is noted in each partitibe;
embedded watermark isl¢1010". Now if Mallory successfully
deletes the marker tuple controlling the first (i), this results in

the deletion of the first bit, see Figure 16(b). The decodwmware

of the deleted bit, will generatexX10101” instead, which is the
result of decoding a shifted version of the embedded bitss Th
results in a watermark synchronization error at the degoskr
Figure 16(b). Moreover, the resynchronization of the watek

bit stream becomes more complicated in the presence of dippe

data setD is unknown. Under these assumptions Mallory is facefgits due to other decoding errors. Thus the successfulicelef
with the dilemma of trying to destroy the watermark and at thg single marker could result in a large number of errors in the
same time of not destroying the data. We classify the attacigcoding phase. To avoid watermark synchronization efirors
preformed by Mallory into three types, namelgletion, alteration marker based techniques the marker tuples should be stored,

and insertionattacks.

as indicated by Sion et al. in [23]. Note that this violates th

Deletion Attack: Mallory deletesa tuples from the marked datarequirement that the watermark decoding is blinded.
set. If the tuples are randomly deleted, then on average eaclon the other hand, our partitioning technique is resilient t
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such synchronization errors as it does not rely on markdesuping scheme to the attacks described in Section VIII. All the
to locate the partition limits; instead our partitioningchi@ique experiments were performed on Intel Pentium IV CPU 3.2GHz
assigns tuples to partitions based a different approacisessted with 512MB RAM. We use real-life data from a relatively small
in Section IV. We also use erasures to indicate the loss database that contains the daily power consumption rates of
a bit due to insufficient partition size and thus to maintaisome customers over a period of one year. Such data sets are
synchronization and ensure that our technique is resitiethe made available through the CIMEGproject. The database size
watermark synchronization error. is approximately 5 Megabytes; for testing purposes onlyksesu
Alteration Attack In this attack Mallory alters the data value ofof the original data is used with 150000 tuples. We used75%,

« tuples. Here Mallory is faced with the challenge that altgri a 16 bit watermark, a minimum partition size= 10, a number of

the data may disturb the watermark; however at the same tip@rtitionsm = 2048, the data change was allowed withit).5%.
Mallory does not have access to the original data Betthus The pattern search algorithm was used for the optimizafitre.
may easily violate the usability constraints and renderda&g optimal threshold was computed using the technigque used in
useless. The alteration attack basically perturbs theiddtape of Section VI to minimize the probability of decoding error. érh
introducing errors in the embedded watermark bits. Theckdta watermarked data set was subject to different types of kasttac
is trying to move the hiding function values from the left bkt including deletion, alteration, and addition attacks. Theults
optimal threshold to the right and vice versa. However, qishe  were averaged over multiple runs. Similar results wereinbth
conflicting objectives in encoding the watermark bits, tisathe for both uniform and normally distributed synthetic datee $¥iow
maximizing the tail count foh; = 1 and minimizing the tail that it is difficult for Mallory to remove or alter the waternka
count for b; = 0, maximizes the distance between the hidingvithout destroying the data.

function values in both cases; thus it makes it more difficult We assessed computation times and observed a polynomial
for the attacker to alter the embedded bit. In addition, by ttbehavior with respect to the input data size. Given the setup
repeated embedding of the watermark and the use of majoritgscribed above, with a local database we obtained an &vefag
voting technique discussed in Section VII this attack casilga around 300 tuples/second for watermark embedding, whilecee

be mitigated. tion turned out to be at least approximately five times as Tgs
Insertion Attack Mallory decides to inser& tuples to the data occurs in the non-optimized, interpreted Java proof of ephc
setDy, hoping to perturb the embedded watermark. The insertiomplementation. We expect major orders of magnitude speedu
of new tuples acts as additive noise to the embedded waterman a real-life deployment version. For comparison purppses
However, the watermark embedding is not based on a single tupave implemented the Sion et al. [23] approach with no stored
and is based on a cumulative hiding function that operates orarkers, where the marker tuples are generated on the flggduri
all the tuples in the partition. Thus the effect of addinglésp both encoding and the decoding phases.

is a minor perturbation to the value of the hiding functiordan

thus to the embedded watermark bit. Marker-based watemngark 10 e — g —f— &
techniques may suffer badly from this attack because thitiadd 90t 1
of tuples may introduce new markers in the data set and thus 8ol |

lead to the addition of new bits in the embedded watermark
sequence. Consequently, this results in watermark synidation
error. Using the example mentioned earlier, Figure 16(awsh
a partitioned data set and its corresponding majority gotirap
using the Sion et al. technique [23], where the embeddedrwate
mark is “101010”. Now if Mallory successfully adds a marker
tuple after the third marker tuple, this results in the addiof a
new bit betweer(b2) and (b3); see Figure 16(c) where the black _
cell represents the added marker tuple. The decoder, uaawar O o echnique ]
of the added bit, will generate010111” instead, which is the 0% 10 20 30 20 50 60 70 80 90 100
result of decoding a shifted version of the embedded bitss Th Deleted Tuples (%)
problem is further complicated in the presence of bit ernorthe
watermark stream. To ensure synchronization at the dedbder
marker based watermarking techniques require the storfatie o
m marker tuples to ensure successful partitioning of thesgata i
in the presence of the insertion attack [23]. On the othedharf™ Deletion Attack
our partitioning algorithm is not dependent on special raark In this attack Mallory randomly drops tuples from the water-
tuples which makes it resilient to such attack, and watgkmamarked data set, the watermark is then decoded and watermark
synchronization is guaranteed during decoding. loss is measured for different values. Furthermore, in this test
The experimental results presented in Section IX suppat tiwe compare our implementation with Sion et al. (No Stored
claims made about the resilience of our watermarking tegteni Markers) [23] approach. Figure 17 shows the experimensailis;

701 1

601 b

501 b

40t .

Waterwark Match (%)

301 1

201 b

Fig. 17. Resilience to deletion attack.

to all the above attacks. they clearly show that our watermarking technique is resilito
the random deletion attack. Using our technique the watdrma
IX. EXPERIMENTAL RESULTS was successfully extracted witld0% accuracy even when over

In this section we report thQ _results of an extensive expartal 2CIMEG: Consortium for the Intelligent Management of thedfie Power
study that analyzes the resilience of the proposed wat&rmagrid. http://helios.ecn.purdue.edutimeg.
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80% of the tuples were deleted. On the other hand, the technigB®n et al. (No Stored Markers) [23] approach. The compariso
by Sion et al. badly deteriorates when onlg% of the tuples shows that our technique is resilient teselected attack even
were deleted. We believe that high resilience of our watékmg when «a is up to100% of the data set size. While on the other
technique is due to the marker-free data partitioning @lgorthat hand, the Sion et al. marker based technique deterioragts ju
is resilient to the watermark synchronization errors cdusethe after adding10% of the data set size. Figure 18(b)&(c) show
tuple deletion. the resilience of our watermarking technique (tg 3)-insertion
Because our technique is highly resilient to tuple deletiomttack, where the watermark was recovered wiith% accuracy
attacks the watermark can be retrieved from a small sampteeof even when up t@0% of the data set size tuples were inserted.
data. This important property combined with the high efficie
of our watermark d(_etection algo_rit_hm makes it possible teetisp C. Alteration Attack
tools able to effectively and efficiently search the web ttede ) ) )
illegal copies of data. We could think of an agent-basedwdwire ~ We tested our watermarking technique against two types of
the agent visits sites and selectively tests parts of thedtdata 2lteration attacks namely the fixed and the randems) alter
sets to check for ownership rights. Such a technique would orRttacks. In the fixede, 5) alter attack Mallory randomly selects
need inspece0% of the data for successful watermark detectiorf: tuples and alters them by multiplyirg; tuples by exactly1+5)
and the others tuples by(1 — ). In this attack, the value of
is fixed. In the randonfe, 3) alter attackx tuples are randomly
selected;5 tuples are then multiplied b1 + x) and the otherg
In this experiment Mallory attempts to add a numbkerof tuples by(1 — z), wherez is a uniform random variable in the
tuples hoping to weaken the embedded watermark. However, iayige|0, 5].
adding tuples to the current data Mallory is adding meaesgl  Figures 19(a)(b)(c) show the behavior of our watermarking
data to the current data. Mallory could simply generate e n technique subject to the fixede, 3) alter attack. As we can see
tuples by replicating values in randomly selected existinqges; from Figure 19(a) the watermark is decoded wittd% accuracy
we refer to such attack as theselected insertion attack. Mallory even when100% of the tuples are altered by > 1.0%. This
could randomly generate the tuple values by generatingorandshows the strong resilience of our watermarking technique t
data from the rangéup,, —Bop,, . Dy + 580Dy, ), Whereup,,  fixed alteration attacks. Furthermore, Figure 19(b) shohes t
andop,, are the mean and standard deviation of the dat®get number of corrupted tuples as the attack proceeds. Tupbds th
respectively. We refer to such attack as theg)-insertion attack. exceed the usability constraints are referred to as cadujpiples.
Figure 18(a) shows a comparison between our approach and Figure 19(b) shows that aftes > 0.9% a sudden increase in

B. Insertion Attack
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Fig. 19. (a-c) Resilience to fixe@x, 3) alter attacks. (d-f) Resilience to randdqm; 3) alter attacks.

the number of corrupted tuples; such an increase is due to ttemparison between our technique and Sion et al. techniagredb
usability constraints used in this experiment, which aretee on the different watermark attacks and main charactesistic
+0.5%. Figure 19(c) is a clear description of the dilemma that theach technique.

attacker is facing. The dotted lines show the number of pbed

tuples, while the solid lines are represent the detectedrwerk X. CONCLUSION

accuracy. By increasing the attacker is able to corrupt the
watermark to80% accuracy, however, at the same time% of
the tuples are corrupted. Similar results were experiefficethe
random{a, 3) attack which are shown in Figures 19(d)(e)(f).

In this paper, we have presented a resilient watermarking
technique for relational data that embeds watermark bitghén
data statistics. The watermarking problem was formulated a
constrained optimization problem, that maximizes or min@n

Experiments performed at lower usability constraintsl stia hiding function based on the bit to be embedded. Genetic
showed similar resilience trends of the watermark encodirmggorithm and pattern search techniques were employedive so
and decoding when subject to above attacks. Table | showsha proposed optimization problem and to handle the cdngira
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TABLE |
COMPARISON BETWEEN OUR TECHNIQUE AND THE TECHNIQUE BYSION ET AL. (NO STORED MARKERS) [23].

Our Technique Sion et al. Technique
(No Stored Markers)

Deletion Attack Resilient to random tuple deletion attack; 100% wa\When the marker tuples are computed on the fly, the
termark accuracy even when more than 80% of théechnique is not resilient to the random tuple deletipn
tuples are deleted. attack. The watermark accuracy deteriorates to 50%
when only 10% of the tuples are deleted.
Insertion Attack Resilient to random tuple insertion attacks; 100%When the marker tuples are computed on the fly, the

watermark accuracy even when more than 100%, dechnique is not resilient to random tuple insertipn
the original number of tuples is inserted in the | attacks; watermark accuracy deteriorates to 50% when
insertion attack and similar watermark accuracy whermnly 10% of the tuples are inserted.
subject to the(«, 8)-insertion attacks.

Alteration Attack Resilient to random tuple alteration; 100% watermarKt is not clear how the bit embedding is performef;
accuracy even when 100% of the tuples are alteredo systematic alteration scheme is defined that |in-

by 8 > 1.0% and 8 > 3.0% for the fixed- | vestigates the feasible embedding space. Threshplds
(e, B) and randomw, ) attacks respectively. The are not based on embedding statistics and are chgsen
watermark embedding technique exploits the feasiplarbitrarily by the user without any optimality criterig.
alteration space by solving an optimization problgm
to enforce the competing objectives based on the
bit to be inserted. Furthermore, decoding threshpld
is computed based on the embedding statistics| to
maximize the probability of decoding error.

Synchronization Error | Not vulnerable to such error, because the techniguelighly vulnerable to such error, due to the depgn-
does not require special marker tuples for the correaency on special marker tuples to locate partitions.
partition reconstruction. Requires the storage of alh marker tuples for the|
correct partition reconstruction.

Decoding  Threshold Uses an optimal threshol@™ that minimizes the| Uses two decoding thresholds which are arbitrarjly
probability of decoding error. decided by the user without any optimality criteria

Furthermore, we presented a data partitioning technigatedies [7] C. Collberg and C. Thomborson. Software Watermarkingdels and

: o L SIGACT Symposium on Principles of Programming Languadzn
proved its resilience to watermark synchronization errofe Antonio, TX, January 1999. ACM.

developed an efficient threshold-based technique for webdr [g] |. Cox, J. Bloom, and M. Miller. Digital Watermarking Morgan
detection that is based on an optimal threshold that migismiz  Kaufmann, 2001.
the probability of decoding error. The watermark resileneas [9] E. Dolan, R. Lewis, and V. Torczon. On the Local Convergenf Pattern

. . . Search.SIAM Journal on Optimizatignl4(2):567-583, 2003.
improved by the repeated embedding of the watermark and US[@O] D. Goldberg. Genetic Algorithm in Search, Optimization and Machine

majority voting technique in the watermark decoding phase. Learning Addison-Wesley, 1989.
Moreover, the watermark resilience was improved by usingt mu11] D. Gross-Amblard.  Query-Preserving Watermarking oéleonal
tiple attributes Databases and XML Documents. RODS '03: Proceedings of the 22nd
’ . . . ACM SIGMOD-SIGACT-SIGART Symposium on Principles of @b
A proof of concept implementation of our watermarking tech- Systemspages 191-201. ACM Press, 2003.
nique was used to conduct experiments using both synthetic 412] F. Hartung and M.Kutter. Multimedia Watermarking Teajues. Pro-

~ ; : i ceedings of the IEEEB7(7):1079-1107, July 1999.

real .World data. A Companson our _watermarklng teChmqu [13] J. Holland. Adaptation in Natural and Artificial SystemsThe MIT

previously-posed techniques techniques shows the suiperid Press, 1992.

our technique to deletion, alteration and insertion agack [14] R. Hooke and T. Jeeves. Direct Search Solution of Nurakand Sta-
tistical Problems.Journal of the Association for Computing Machinery
8(2):212-229, 1961.

[15] G. Langelaar, I. Setyawan, and R. Lagendijk. WaterimarlDigital
Image and Video Data: A State-of-the-Art OverviewlEEE Signal

. . . Processing Magazinel7(5):20-46, September 2000.

[1] R. Agrawal and J. Kiernan. Watermarking Relational bases. In [16] R. Lewis and V. Torczon. Pattern Search Methods for &itye Con-
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