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Abstract— Proving ownership rights on outsourced relational
databases is a crucial issue in today internet-based application
environments and in many content distribution applications. In
this paper, we present a mechanism for proof of ownership
based on the secure embedding of a robust imperceptible wa-
termark in relational data. We formulate the watermarking o f
relational databases as a constrained optimization problem, and
discuss efficient techniques to solve the optimization problem
and to handle the constraints. Our watermarking technique is
resilient to watermark synchronization errors because it uses a
partitioning approach that does not require marker tuples. Our
approach overcomes a major weakness in previously proposed
watermarking techniques. Watermark decoding is based on a
threshold-based technique characterized by an optimal threshold
that minimizes the probability of decoding errors. We imple-
mented a proof of concept implementation of our watermarking
technique and showed by experimental results that our technique
is resilient to tuple deletion, alteration and insertion attacks.

Index Terms— Watermarking, Digital Rights, Optimization.

I. I NTRODUCTION

T HE rapid growth of internet and related technologies has
offered an unprecedented ability to access and redistribute

digital contents. In such a context, enforcing data ownership is
an important requirement which requires articulated solutions,
encompassing technical, organizational and legal aspects[25].
Though we are still far from such comprehensive solutions,
in the last years watermarking techniques have emerged as an
important building block which plays a crucial role in addressing
the ownership problem. Such techniques allow the owner of
the data to embed an imperceptible watermark into the data.
A watermark describes information that can be used to prove
the ownership of data, such as the owner, origin, or recipient
of the content. Secure embedding requires that the embedded
watermark must not be easily tampered with, forged, or removed
from the watermarked data [26]. Imperceptible embedding means
that the presence of the watermark is unnoticeable in the data.
Furthermore, the watermark detection is blinded ,that is, it neither
requires the knowledge of the original data nor the watermark.
Watermarking techniques have been developed for video, images,
audio, and text data [24], [12], [15], [2], and also for software
and natural language text [7], [3].

By contrast the problem of watermarking relational data has
not been given appropriate attention. There are, however, many

M. Shehab is with the Department of Software and InformationSystems,
University of North Carolina at Charlotte, Charlotte, NC 28223. E-mail:
mshehab@uncc.edu.

E. Bertino is with the Department of Computer Sciences, Purdue
University, 250 N. University Street, West Lafayette, IN 47906. Email:
bertino@cs.purdue.edu.

A. Ghafoor is with the School of Electrical and Computer Engineering,
Purdue University, 465 Northwestern Ave. West Lafayette, IN 47907. Email:
ghafoor@ecn.purdue.edu.

application contexts for which data represent an importantasset,
the ownership of which must thus be carefully enforced. Thisis
the case, for example, of weather data, stock market data, power
consumption, consumer behavior data, medical and scientific data.
Watermark embedding for relational data is made possible by
the fact that real data can very often tolerate a small amount
of error without any significant degradation with respect totheir
usability. For example when dealing with weather data, changing
some daily temperatures of 1 or 2 degrees is a modification that
leaves the data still usable.

To date only a few approaches to the problem of watermarking
relational data have been proposed [1], [23]. These techniques,
however, are not very resilient to watermark attacks. In this paper,
we present a watermarking technique for relational data that
is highly resilient compared to these techniques. In particular,
our proposed technique is resilient to tuple deletion, alteration,
and insertion attacks. The main contributions of the paper are
summarized as follows:

• We formulate the watermarking of relational databases as
a constrained optimization problem, and discuss efficient
techniques to handle the constraints. We present two tech-
niques to solve the formulated optimization problem based
on genetic algorithms and pattern search techniques.

• We present a data partitioning technique that does not depend
on marker tuples to locate the partitions and thus it is resilient
to watermark synchronization errors.

• We develop an efficient technique for watermark detection
that is based on an optimal threshold. The optimal threshold
is selected by minimizing the probability of decoding error.

• With a proof of concept implementation of our water-
marking technique, we have conducted experiments using
both synthetic and real-world data. We have compared our
watermarking technique with previous approaches [1], [23]
and shown the superiority of our technique with respect to
all types of attacks.

The paper is organized as follows. Section II discusses the
related work which includes the available relational database
watermarking techniques and highlights the shortcomings of
these techniques. An overview of our watermarking technique
is described in Section III, where an overview of the watermark
encoding and decoding stages is presented. Section IV discusses
the data partitioning algorithm. The watermark embedding algo-
rithm is described in Section V. Sections VI and VII discuss
the decoding threshold evaluation and the watermark detection
scheme. Section VIII presents the attacker model. The experi-
mental results are presented in Section IX. Finally, conclusions
are given in Section X.

II. RELATED WORK

Agrawal et al. [1] proposed a watermarking algorithm that
embeds the watermark bits in the least significant bits (LSB)of
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Fig. 1. Stages of watermark encoding and decoding.

selected attributes of a selected subset of tuples. This technique
does not provide a mechanism for multibit watermarks; instead
only a secret key is used. For each tuple, a secure message
authenticated code (MAC) is computed using the secret key and
the tuple’s primary key. The computed MAC is used to select
candidate tuples, attributes and the LSB position in the selected
attributes. Hiding bits in LSB is efficient. However, the watermark
can be easily compromised by very trivial attacks. For example
a simple manipulation of the data by shifting the LSB’s one
position easily leads to watermark loss without much damage
to the data. Therefore the LSB-based data hiding technique is
not resilient [21], [8]. Moreover, it assumes that the LSB bits in
any tuple can be altered without checking data constraints.Simple
unconstrained LSB manipulations can easily generate undesirable
results such as changing the age from 20 to 21. Li et al. [18]
have presented a technique for fingerprinting relational data by
extending Agrawal et al.’s watermarking scheme.

Sion et al. [23] proposed a watermarking technique that em-
beds watermark bits in the data statistics. The data partitioning
technique used is based on the use of special marker tuples which
makes it vulnerable to watermark synchronization errors resulting
from tuple deletion and tuple insertion; thus such technique is
not resilient to deletion and insertion attacks. Furthermore, Sion
et al. recommend storing the marker tuples to enable the decoder
to accurately reconstruct the underlying partitions; however this
violates the blinded watermark detection property. A detailed
discussion of such attacks is presented in Section VIII. The
data manipulation technique used to change the data statistics
does not systematically investigate the feasible region; instead a
naive unstructured technique is used which does not make use
of the feasible alterations that could be performed on the data
without affecting its usability. Furthermore, Sion et al. proposed
a threshold technique for bit decoding that is based on two
thresholds. However, the thresholds are arbitrarily chosen without
any optimality criteria. Thus the decoding algorithm exhibits
errors resulting from the non-optimal threshold selection, even
in the absence of an attacker.

Gross-Amblard [11] proposed a watermarking technique for
XML documents and theoretically investigates links between
query result preservation and acceptable watermarking alterations.
Another interesting related research effort is to be found in [17]
where the authors have proposed a fragile watermark technique
to detect and localize alterations made to a database relation with
categorical attributes.

III. A PPROACHOVERVIEW

Figure 1 shows a block diagram summarizing the main com-
ponents of the watermarking system model used. A data setD

is transformed into a watermarked versionDW by applying a
watermark encoding function that also takes as inputs a secret
key Ks only known to the copyright owner and a watermark
W . Watermarking modifies the data. However these modifications
are controlled by providing usability constraints referred to by
the setG. These constraints limit the amount alterations that can
be performed on the data, such constraints will be discussedin
detail in the following sections. The watermark encoding can be
summarized by the following three steps:
Step E1. Data set partitioning: by using the secret keyKs

the data setD is partitioned intom non-overlapping partitions
{S0, . . . , Sm−1}.
Step E2.Watermark embedding: a watermark bit is embedded in
each partition by altering the partition statistics while still veri-
fying the usability constraints inG. This alteration is performed
by solving a constrained optimization problem.
Step E3.Optimal threshold evaluation: the bit embedding statis-
tics are used to compute the optimal thresholdT ∗ that minimizes
the probability of decoding error.

The watermarked versionDW is delivered to the intended
recipient. Then it can suffer from unintentional distortions or
attacks aimed at destroying the watermark information. Note that
even intentional attacks are performed without any knowledge of
Ks or D, since these are not publicly available.

Watermark decoding is the process of extracting the embedded
watermark using the watermarked data setDW , the secret keyKs

and the optimal thresholdT ∗. The decoding algorithm is blind as
the original data setD is not required for the successful decoding
of the embedded watermark. The watermark decoding is divided
into three main steps:
Step D1. Data set partitioning: by using the data partitioning
algorithm used inE1, the data partitions are generated.
Step D2.Threshold based decoding: the statistics of each partition
are evaluated and the embedded bit is decoded using a threshold
based scheme based on the optimal thresholdT ∗.
Step D3.Majority voting: The watermark bits are decoded using
a majority voting technique.

In the following sections we discuss each of the encoding and
decoding steps in detail.

IV. DATA PARTITIONING

In this section we present the data partitioning algorithm that
partitions the data set based on a secret keyKs. The data setD
is a database relation with schemeD(P, A0, . . . , Aν−1), where
P is the primary key attribute,A0, . . . , Aν−1 are ν attributes
which are candidates for watermarking and|D| is the number
of tuples inD. The data setD is to be partitioned intom non-
overlapping partitions namely{S0, . . . , Sm−1}, such that each
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partition Si contains on average|D|
m tuples from the data setD.

Partitions do not overlap, that is, for any two partitionsSi and
Sj such thati 6= j we haveSi ∩ Sj = {}. For each tupler ∈ D

the data partitioning algorithm computes a message authenticated
code (MAC) which is considered to be secure [22] and is given by
H(Ks||H(r.P ||Ks)), wherer.P is the primary key of the tupler,
H() is a secure hash function and|| is the concatenation operator.
Using the computed MAC tuples are assigned to partitions. For
a tupler its partition assignment is given by

partition(r) = H(Ks||H(r.P ||Ks)) mod m

Using the property that secure hash functions generate uniformly
distributed message digests this partitioning technique on average
places |D|

m tuples in each partition. Furthermore, an attacker
cannot predict the tuples-to-partition assignment without the
knowledge of the secret keyKs and the number of partitions
m which are kept secret. Keepingm secret is not a requirement.
However, keeping it secret makes it harder for the attacker to
regenerate the partitions. The partitioning algorithm is described
in Figure 2.

Though the presence of a primary key in the relation being
watermarked is a common practice in relational data, our tech-
nique can be easily extended to handle cases when the relation
has no primary key. Assuming a single attribute relation, the
most significantχ bits (MSB) of the data could be used as a
substitute for the primary key. The use of the MSB assumes that
the watermark embedding data alterations will unlikely alter the
MSB χ bits. However, if too many tuples share the same MSB
χ bits this would enable the attacker to infer information about
the partition distribution. The solution would be to selectχ that
minimizes the duplicates. Another technique, in case of a relation
with multiple attributes is to use identifying attributes instead of
the primary key; for example in medical data we could use the
patient full name, patient address, patient date of birth.

Our data partitioning algorithm does not rely on special marker
tuples for the selection of data partitions, which makes it resilient
to watermark synchronization attacks caused by tuple deletion and
tuple insertion. By contrast, Sion et al. [23] use special marker
tuples, having the property thatH(Ks||H(r.P ||Ks)) mod m =

0, to partition the data set. In Sion’s approach a partition is
defined as the set of tuples between two markers. Marker-based
techniques not only use markers to define partitions but alsoto
define boundaries between the embedded watermark bits. Sucha
technique is very fragile to tuple deletion and insertion due to the
errors caused by the addition and deletion of marker tuples.This
attack is discussed in more detail in Section VIII.

Algorithm: get partitions
Input: Data set D, Secret Key Ks, Number of
partitions m
Output: Data partitions S0, . . . , Sm−1

1. S0, . . . , Sm−1 ← {}
2. for each Tuple r ∈ D,
3. partition(r)← H(Ks||H(r.P ||Ks)) mod m
4. insert r into Spartition(r)

5. return S0, . . . , Sm−1

Fig. 2. Data partitioning algorithm

Symbol Description
m Number of data partitions
ξ Minimum partition size
W Watermark bit sequence{bl−1, . . . , b0}
l Length of watermark bit sequence

Xmax Maximization embedding statistics
Xmin Minimization embedding statistics

Si Data partition, numeric data vector inRn

|Si|, n Length of vectorSi

Ks Secret Key
T ∗ Optimal decoding threshold
Gi Usability constraints
∆i Manipulation vector inRn

Fig. 3. Notation

V. WATERMARK EMBEDDING

In this section we describe the watermark embedding algorithm
by formalizing the bit encoding as a constrained optimization
problem. Then we propose a genetic algorithm and a pattern
search technique that can be used to efficiently solve such opti-
mization problem. The selection of which optimization algorithm
to use is decided according to the application time and processing
requirements as will be discussed further. At the end of this
section we give the overall watermark embedding algorithm.Our
watermarking technique is able to handle tuples with multiple
attributes as we will discuss in Section VII. However, to simplify
the following discussion we assume the tuples in a partitionSi

contain a single numeric attribute. In such a case each partition Si

can be represented as a numeric data vectorSi = [si1, . . . , sin] ∈
ℜn.

A. Single Bit Encoding

Given a watermark bitbi, and a numeric data vectorSi =

[si1, . . . , sin] ∈ ℜn the bit encoding algorithm maps the data
vector Si to a new data vectorSW

i = Si + ∆i, where ∆i =

[∆i1, . . . , ∆in] ∈ ℜn is referred to as the manipulation vector.
The performed manipulations are bounded by the data usability
constraints referred to by the setGi = {gi1, . . . , gip}. The
encoding is based on optimizing encoding function referredto
as thehiding functionwhich is defined as follows:

Definition 1: A hiding functionΘΥ : ℜn → ℜ, whereΥ is the
set of secret parameters decided by the data owner.
The setΥ can be regarded as part of the secret key. Note that when
the hiding function is applied toSi + ∆i the only variable is the
manipulation vector∆i, while Si andΥ are constants. To encode
bit bi into setSi the bit encoding algorithm optimizes the hiding
functionΘΥ(Si +∆i). The objective of the optimization problem
of maximizing or minimizing the hiding function is based on the
bit bi such that if the bitbi is equal to1 then the bit encoding
algorithm solves the following maximization problem:

max
∆i

ΘΥ(Si + ∆i)

subject to Gi

However, if the bitbi is equal to0, then the problem is simply
changed into a minimization problem. The solution to the opti-
mization problem generates the manipulation vector∆∗

i at which
ΘΥ(Si + ∆∗

i ) is optimal. The new data setSW
i is computed as

Si + ∆∗
i . Using contradicting objectives, namely maximization
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for bi = 1 and minimization forbi = 0, ensures that the values
of ΘΥ(Si + ∆∗

i ) generated in both cases are located at maximal
distance and thus makes the inserted bit more resilient to attacks,
in particular to alteration attacks.

Figure 4 depicts the bit encoding algorithm. The bit encoding
algorithm embeds bitbi in the partitionSi if |Si| is greater than
ξ. The value ofξ represents the minimum partition size. The
maximize andminimize in the bit encoding algorithm opti-
mize the hiding functionΘΥ(Si + ∆∗

i ) subject to the constraints
in Gi. The maximization and minimization solution statistics are
recorded for each encoding step inXmax, Xmin respectively
as indicated in lines 4 and 7 of the encoding algorithm. These
statistics are used to compute optimal decoding parametersas will
be discussed in Section VI.

Algorithm: encode single bit
Input: Data set Si, Bit bi, Constraints set Gi,
Secret parameters set Υ, Statistics Xmax,Xmin

Output: Data set Si + ∆∗

i

1. if (|Si| < ξ) then return Si

2. if (bi == 1) then
3. maximize(ΘΥ(Si + ∆i)) subj to Gi

4. insert ΘΥ(Si + ∆∗

i ) into Xmax

5. else
6. minimize(ΘΥ(Si + ∆i)) subj to Gi

7. insert ΘΥ(Si + ∆∗

i ) into Xmin

8. return Si + ∆∗

i

Fig. 4. Bit encoding algorithm

The set of usability constraintsGi represents the bounds on
the tolerated change that can be performed on the elements ofSi.
These constraints describe the feasible space for the manipulation
vector ∆i for each bit encoding step. These constraints are
application and data dependent. The usability constraintsare
similar to the constraints enforced on watermarking algorithms for
audio, images and video which mainly require that the watermark
is not detectable by the human auditory and visual system [24],
[12], [15], [8]. For example, interval constraints could beused to
control the magnitude of the alteration for∆ij , that is,

∆min
ij ≤ ∆ij ≤ ∆max

ij

Another example of usability constraints are classification-
preserving constraints which constrain the encoding alterations to
generate data that belong to the same classification as the original
data. For example, when watermarking age data the results after
the alteration should fall in the same age group e.g. “preschool”
(0-6 years), “child” (7-13), “teenager” (14-18), “young male” (19-
21), “adult” (22+), these constraints can be easily described using
interval constraints as they are similar to defining bounds on
∆i. Another interesting type of constraints may require that the
watermarked data set maintain certain statistics. For example the
mean of the generated data set be equal to mean of the original
data set, in such a case the constructed constraint is of the form:

n∑

j=1

∆ij = 0

Several other usability constraints could be devised depending on
the application requirements. These constraints are handled by the
bit encoding algorithm by using constrained optimization tech-

niques when optimizing the hiding function as will be discussed
in the subsequent sections.

 
ref 

Fig. 5. The distribution of the setSi + ∆i on the number line and the tail
entries circled.

For the sake of comparison in this paper, we use the statistics
based hiding function used by Sion et al [23]. The mean and
variance estimates of the new setSW

i = Si + ∆i are referred to
as µ(Si+∆i) and σ2

(Si+∆i)
respectively; for short we will useµ

andσ2. We define the reference point asref = µ + c× σ, where
c ∈ (0, 1) is a secret real number which is part of the setΥ.
The data points inSi + ∆i that are aboveref are referred to as
the“tail” entries as illustrated by Figure 5. The hiding function
Θc is defined as the number of tail entries normalized by the
cardinality ofSi, also referred to as the normalized tail count. It
is computed as follows:

Θc(Si + ∆i) =
1

n

n∑

j=1

1{sij+∆ij≥ref}

where,n is the cardinality ofSi and1{} is the indicator function
defined as follows:

1{condition} =

{
1 if condition = TRUE,
0 otherwise.

Note that the referenceref is dependent on bothµ andσ which
means that it is not fixed and dynamically varies with the statistics
of Si +∆i. Also note that, the normalized tail countΘc(Si +∆i)

depends on the distribution ofSi + ∆i and the dynamicref .
The objective functionΘc(Si + ∆i) is nonlinear and nondif-

ferentiable, which makes the optimization problem at hand a
nonlinear constrained optimization problem. In such problems
traditional gradient-based approaches turn out to be inapplicable.
To solve this optimization problem we propose two techniques
based on Genetic Algorithm and Pattern Search respectively.
The choice of the technique to use depends on the application
processing requirements. Solving the optimization problem does
not necessarily require to find a global solution because finding
such solution may require a large number of computations. Our
main goal is to find a near optimal solution that ensures that
solutions of the minimization ofΘc(Si + ∆i) and maximization
of Θc(Si+∆i) are separated as far as possible from each other. As
we will discuss further, GA could be used in order to determine
global optimal solutions by trading processing time, whilePattern
Search could be used to provide a local optimal solution without
trading processing time. Note that these optimization techniques
will function for simpler hiding functions. However, having a
simple linear hiding function makes it easier to attack. For
example, if the average is used as the hiding function, in this case
the optimization problem will merely be adding or subtracting a
constant term to the data vector to maximize or minimize the
average.

B. Genetic Algorithm Technique

A genetic algorithm (GA) is a search technique that is based
on the principles of natural selection or survival of the fittest.
Pioneering work in this field was conducted by Holland in
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the 1960s [13], [6]. Many researchers have refined his initial
approach. Instead of using gradient information, the GA uses the
objective function directly in the search. The GA searches the
solution space by maintaining a population of potential solutions.
Then, by using evolving operations such as crossover, mutation,
and selection, the GA creates successive generations of solutions
that evolve and inherit the positive characteristics of their parents
and thus gradually approach optimal or near-optimal solutions.
By using the objective function directly in the search, GA’scan
be effectively applied in nonconvex, highly nonlinear, complex
problems [10], [5]. GA’s have been frequently used to solve
combinatorial optimization problems and nonlinear problems with
complicated constraints or nondifferentiable objective functions.
A GA is not guaranteed to find the global optimum; however it
is less likely to get trapped at a local optimum than traditional
gradient-based search methods when the objective functionis not
smooth and generally well behaved. A GA usually analyzes a
larger portion of the solution space than conventional methods
and is therefore more likely to find feasible solutions in heavily
constrained problems.

The feasible setΩi is the set of values of∆i that satisfy all
constraints inGi. GA’s do not work directly with points in the
setΩi, but rather with a mapping of the points inΩi into a string
of symbols calledchromosomes. A simple binary representation
scheme uses symbols from{0, 1}; each chromosome isL symbols
long. As an example the binary chromosome representing the
vector ∆i = [∆i1, . . . , ∆in] is indicated in Figure 6. Note
that each component of∆i uses L/n bits, wheren = |Si|.
This chromosome representation automatically handles interval
constraints on∆i. For example if∆ij can only take values
in the interval [lij , hij ], then by mapping the integers in the
interval [0, 2L/n − 1] to values in the interval[lij , hij ] via simple
translation and scaling, this ensures that, whatever operations are
performed on the chromosome, the entries are guaranteed to stay
within the feasible interval.

0101010101010101︸ ︷︷ ︸ 1111111111111111︸ ︷︷ ︸ · · · 0011001100110011︸ ︷︷ ︸
∆i1 ∆i2 · · · ∆in

Fig. 6. Binary chromosome representing∆i

Each chromosome has a corresponding value of the objective
function, referred to as thefitnessof the chromosome. To handle
other types of constraints we penalize the infeasible chromosomes
by reducing their fitness value according to a penalty function
Φ(∆i), which represents the degree of infeasibility. Without loss
of generality, if we are solving the maximization problem in
Section V-A with constraintsGi = {gi1, . . . , gip}, then the fitness
function used isΘc(Si + ∆i) + λΦ(∆i), whereλ ∈ ℜ− is the
penalty multiplier and is chosen large enough to penalize the
objective function in case of infeasible∆i. The penalty function
Φ(∆i) is given by:

Φ(∆i) =

p∑

j=1

g+
ij(∆i)

where

g+
ij(∆i) =

{
0 if ∆i is feasible w.r.tgij

φ(gij , ∆i) otherwise

whereφ(gij , ∆i) ∈ ℜ+ represents the amount of infeasibility with
respect to the constraintgij . For example if the constraintgij is

∑n
j=1 ∆ij = 0 then φ(gij , ∆i) =‖ ∑n

j=1 ∆ij ‖. For a detailed
discussion of penalty based techniques the interested reader is
referred to [20], [5].
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A GA is less likely to get stuck in local optima. However, a GA
requires a large number of functional evaluations to converge to a
global optimal. Thus we recommend the use of GA’s only when
the processing time is not a strict requirement and watermarking
is performed offline. For faster performance we recommend the
use of pattern search techniques discussed in the next section.

C. Pattern Search Technique

Pattern search methods are a class of direct search methods
for nonlinear optimization. Pattern search methods [4], [14] have
been widely used because of their simplicity and the fact that
they work well in practice on a variety of problems. More
recently, they are provably convergent [16], [9]. Pattern search
starts at an initial point and samples the objective function at a
predetermined pattern of points centered about that point with the
goal of producing a new better iterate. Such moves are referred
to as exploratory moves, Figure 8 shows an example pattern in
ℜ2. If such sampling is successful (i.e.,produces a new better
iterate), the process is repeated with the pattern centeredabout
the new best point. If not, the size of the pattern is reduced and
the objective function is again sampled about the current point.
For a detailed discussion on pattern search refer to [16], [9]. To
improve the performance of pattern search the objective function
Θc(Si + ∆i) is approximated by smooth sigmoid functions. The
objective function is approximated as follows:

Θ̂c(Si + ∆i) =
1

n

n∑

j=1

Sigmoid(αf ,ref)(sij + ∆ij)

where Sigmoid(α,τ)(x) is a sigmoid function with parameters
(α, τ ), shown in Figure 7, is defined as(1 − (1 + eα(x−τ))−1).

Constraints could be handled using the techniques discussed
earlier. However, pattern search can easily handle the constraints
by limiting the exploratory moves to only the directions that
end up in the feasible space; thus ensuring that the generated
solution is feasible. For a more detailed discussion refer to [16].
The systematic behavior of pattern search and the adaptable
pattern size leads to the fast convergence to optimal feasible
solutions. However, pattern search is not guaranteed to finda
global optimum. This problem can be overcome by starting the
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Fig. 8. Example pattern for coordinate search inℜ2, as part of a larger grid.

algorithm from different initial feasible points. For the sake
of comparison, we conducted an experiment using normally
distributed data where the tail countΘc(Si +∆i) was maximized
and minimized using both pattern search and GA with interval
constraints. Both algorithms were restricted to use an equal num-
ber of objective function evaluations. Figure 9 reports theresults
of this experiment, which shows that pattern search generates
better optimized tail counts, and thus better separation between
the maximization and minimization results. However, if GA is
given more functional evaluations converges to global optimum
solutions.
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D. Watermark Embedding Algorithm

A watermark is a set ofl bits W = bl−1, . . . , b0 that are to be
embedded in the data partitions{S0, . . . , Sm−1}. To enable mul-
tiple embeddings of the watermark in the data set the watermark
length l is selected such thatl ≪ m. The watermark embedding
algorithm embeds a bitbi in partition Sk such thatk mod l = i.
This technique ensures that each watermark bit is embedded⌊m

l ⌋
times in the data setD. The watermark embedding algorithm
is reported in Figure 10. The watermark embedding algorithm
generates the partitions by callingget partitions, then for each
partition Sk a watermark bitbi is encoded by using the single
bit encoding algorithm(encode single bit) that was discussed
in the previous sections. The generated altered partitionSW

k is

inserted into watermarked data setDW . Statistics(Xmax, Xmin)

are collected after each bit embedding and are used by the
get optimal threshold algorithm to compute the optimal de-
coding threshold; these details will be discussed further in the
following sections.

Algorithm: embed watermark
Input: Data set D, Watermark W = {b0, . . . , bl−1},
Secret Key Ks, Number of partitions m
Output: Watermarked data set DW, Optimal
Decoding Threshold T ∗

1. DW , Xmax, Xmin ← {}
2. S0, . . . , Sm−1 ← get partitions(D, Ks, m)
3. for each Partition Sk

4. i← k mod l

5. SW
k
← encode single bit(bi, Sk, c, Xmax, Xmin)

6. insert SW
k

into DW

7. T ∗ ← get optimal thershold(Xmax, Xmin)
8. return DW , T ∗

Fig. 10. Watermark embedding algorithm

VI. D ECODING THRESHOLDEVALUATION

In the previous sections we discussed the bit encoding tech-
nique which embeds a watermark bitbi in a partition Si to
generate a watermarked partitionSW

i . In this section, we discuss
the bit decoding technique which is used to extract the embedded
watermark bit bi from the partition SW

i . The bit decoding
technique is based on an optimal thresholdT ∗ that minimizes
the probability of decoding error. The evaluation of such optimal
threshold is discussed in this section.

Presented with the data partitionSW
i the bit decoding technique

computes the hiding functionΘΥ(SW
i ) and compares it to the

optimal decoding thresholdT ∗ to decode the embedded bitbi. If
ΘΥ(SW

i ) is greater thanT ∗ then the decoded bit is1 otherwise
the decoded bit is0. For example, using the hiding function
described in Section V-A the decoding technique computes the
normalized tail count ofSW

i by computing the referenceref and
by counting the number of entries inSW

i that are greater than
ref . Then the computed normalized tail count is compared to
T ∗, see Figure 11. The decoding technique is simple; however,
the value of the thresholdT ∗ should be carefully calculated so
as to minimize theprobability of bit decoding erroras will be
discussed in this section.

 T* 0 
Bit = 1 Bit = 0 

1 

Fig. 11. Threshold based decoding scheme.

The probability of bit decoding erroris defined as the prob-
ability of an embedded bit decoded incorrectly. The decoding
thresholdT ∗ is selected such that it minimizes the probability of
decoding error. The bit embedding stage discussed in Section V-
A is based on the maximization or minimization of the tail
count; these optimized hiding function values computed during
the encoding stage are used to compute the optimum thresholdT ∗.
The maximized hiding function values corresponding tob′is equal
to 1 are stored in the setXmax. Similarly the minimized hiding
function values are stored inXmin, (see algorithm in Figure 4).
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Fig. 12. (a) Showsf(x|be = 0), f(x|be = 1) and the computedT ∗ = 0.24142. (b) Gaussian approximation and experimental values ofPerr for different
decoding threshold(T ) values.

Let Perr, P0, and P1 represent the probability of decoding
error, the probability of encoding a bit = 0 and the probability of
encoding a bit = 1 respectively. Furthermore, letbe, bd, andf(x)

represent the encoded bit, decoded bit, and a probability density
function respectively.Perr is calculated as follows:

Perr = P (bd = 0, be = 1) + P (bd = 1, be = 0)

= P (bd = 0|be = 1)P1 + P (bd = 1|be = 0)P0

= P (x < T |be = 1)P1 + P (x > T |be = 0)P0

= P1

∫ T

−∞
f(x|be = 1)dx + P0

∫ ∞

T
f(x|be = 0)dx

To minimize the probability of decoding error(Perr) with respect
to the thresholdT we take the first order derivative ofPerr with
respect toT to locate the optimal thresholdT ∗, as follows:

∂Perr

∂T
= P1

∂

∂T

∫ T

−∞
f(x|be = 1)dx + P0

∂

∂T

∫ ∞

T
f(x|be = 0)dx

= P1f(T |be = 1) − P0f(T |be = 0)

The distributionsf(x|be = 0) andf(x|be = 1) are estimated from
the statistics of the setsXmin andXmax respectively. From our
experimental observations ofXmin and Xmax the distributions
f(x|be = 0) andf(x|be = 1) pass the chi-square test of normality
and thus can be estimated as Gaussian distributionsN(µ0, σ0)

andN(µ1, σ1) respectively. However, the following analysis can
still be performed with other types of distributions.P0 could be
estimated by |Xmin|

|Xmax|+|Xmin| and P1 = 1 − P0. Substituting the
Gaussian expressions forf(x|be = 0) and f(x|be = 1) the first
order derivative ofPerr is as follows:

∂Perr

∂T
=

P1

σ1

√
2π

exp(− (T − µ1)2

2σ2
0

) − P0

σ0

√
2π

exp(− (T − µ0)2

2σ2
0

)

By equating the first order derivative ofPerr to zero we get
the following quadratic equation the roots of which includethe
optimal thresholdT ∗ that minimizesPerr. The second order
derivative ofPerr is evaluated atT ∗ to ensure that the second

order necessary condition (∂2Perr(T∗)
∂T 2 > 0) is met.

σ2
0 − σ2

1

2σ2
0σ2

1

T ∗2
+

µ0σ2
1 − µ1σ2

0

σ2
0σ2

1

T ∗+

ln
(P0σ1

P1σ0

)
+

µ2
1σ2

0 − µ2
0σ2

1

2σ2
0σ2

1

= 0

From the above analysis the selection of the optimalT ∗ is based
on the collected output statistics of the watermark embedding
algorithm. The optimal thresholdT ∗ minimizes the probability of
decoding error and thus enhances the strength of the embedded
watermark by increasing the chances of successful decoding. To
show the high dependency of the probability of decoding error and
the choice of decoding thresholdT ∗, we conducted an experiment
using real life1 data with usability constraints of±0.5% of the
original data value. The histograms and the Gaussian estimates
of Xmax and Xmin obtained from the experiment are reported
in Figure 12(a). The optimal computed thresholdT ∗ is indicated
by the dotted vertical line. As we can see from Figure 12(a) the
two distributions are far apart which is a direct result of using the
competing objectives forbi equal to 1 and 0. Figure 12(b), shows
the probability of decoding error for different values of the decod-
ing threshold, which shows the presence of an optimal threshold
that minimizes the probability of decoding error. Furthermore,
Figure 12(b) shows both the Gaussian approximation and the
experimental values of the probability of decoding error, which
shows that the Gaussian approximation matches the experimental
results.

The probability of decoding error is also dependent on the
usability constraints. If the usability constraints are tight the
amount of alterations to the data setD may not be enough for the
watermark insertion. Figure 13(a) shows the effect of varying the
usability constraints on the separation betweenf(x|be = 0) and
f(x|be = 1). Note that as the usability constraints is increased
this allows more encoding data manipulation and thus makes
f(x|be = 0) and f(x|be = 1) more separated. Figure 13(b)
shows the minimum probability of decoding error computed using
the optimal thresholdT ∗ for data subject to different usability

1Description of such data is discussed in Section IX
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Fig. 13. (a)Showsf(x|be = 0), f(x|be = 1) andT ∗ for different usability constraints. (b)The minimumPerr at T ∗ for different usability constraints.

constraints. The overall watermark probability of decoding error
is reduced by embedding the watermark multiple times in the data
set, which is basically a repetition error correcting code.

VII. WATERMARK DETECTION

In this section we discuss the watermark detection algorithm
which extracts the embedded watermark using the secret parame-
ters includingKs, m, ξ, c, T . The algorithm starts by generating
the data partitions{S0, . . . , Sm−1} using the watermarked data
setDW , the secret keyKs and the number of partitionsm as input
to the data partitioning algorithm discussed in Section IV.Each
partition encodes a single watermark bit; to extract the embedded
bit we use the threshold decoding scheme based on the optimal
thresholdT that minimizes the probability of decoding error as
discussed in Section VI. If the partition size is smaller than ξ the
bit is decoded as an erasure, otherwise it is decoded using the
threshold scheme.

As the watermarkW = bl−1, . . . , b0 is embedded several times
in the data set each watermark bit is extracted several timeswhere
for a bit bi it is extracted from partitionSk wherek mod l = i.
The extracted bits are decoded using the majority voting technique
which is used in the decoding of repetition error correctingcodes.
Each bit bi is extractedm

l times so it represents a⌊m
l ⌋-fold

repetition code [19]. The majority voting technique is illustrated
by the example in Figure 14. The detailed algorithm used for
watermark detection is reported in Figure 15.

In case of a relation with multiple attributes the watermark
resilience can be increased by embedding the watermark in
multiple attributes. This is a simple extension to the presented
encoding and decoding techniques in which the watermark is
embedded in each attributed separately. For aδ attribute relation,
the watermark bit is embedded in each of theδ columns separately
using the bit embedding technique discussed in Section V-A.
The use of multiple attributes enables the multiple embedding of
watermark bitsδ times in each partition, such embedding can be
considered as an innerδ-fold repetition code [19]. For decoding
purposes the statisticsXmax and Xmin are collected for each
attribute separately. The optimal threshold is computed for each
attribute using the collected statistics to minimize the probability
of decoding error as discussed in Section VI. In the decoding

5 bits 4 3 2 1 0 

w1 

w0 

w2 

w3 

wresult 

� ������ ��� ���� �� � ������ � ��� � � �
Fig. 14. An example illustrates the majority bit matching decoding algorithm
for a watermarkW = 011010, with ′′×′′ representing the erasures.

phase, the watermark is extracted separately from each of the δ

attributes using the discussed watermark detection algorithm, then
majority voting is used to detect the final watermark.

VIII. A TTACKER MODEL

In this section we discuss the attacker model and the possible
malicious attacks that can be performed. Assume, Alice is the
owner of the data setD and has markedD by using a watermark
W to generate a watermarked data setDW . The attacker Mallory
can perform several types of attacks in the hope of corrupting or
even deleting the embedded watermark. A robust watermarking
technique must be able to survive all such attacks.

We assume that Mallory has no access to the original data
set D and does not know any of the secret information used
in the embedding of the watermark, including the secret key
Ks, the secret number of partitionsm, the secret constantc,
the optimization parameters and the optimal decoding threshold
T ∗. Given these assumptions Mallory cannot generate the data
partitions {S0, . . . , Sm−1} because this requires the knowledge
of both the secret keyKs and the number of partitionsm,
thus Mallory cannot intentionally attack certain watermark bits.
Moreover, any data manipulations executed by Mallory cannot
be checked against the usability constraints because the original
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(a) Watermarked dataset
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(b) After deletion attack
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(c) After insertion attack

Fig. 16. Watermarked dataset subject to the deletion and insertion attacks repectively, and their corresponding majority voting maps. Grey shaded cells
represent the original marker tuples and the black cells represent the added marker tuples.

Algorithm: detect watermark
Input: Watermarked data set DW , m, c, ξ, Ks,
T ∗, Watermark length l
Output: Detected watermark WD

1. set ones[0, . . . , l− 1]← 0
2. set zeros[0, . . . , l− 1]← 0
3. S0, . . . , Sm−1 ← get partitions(DW , Ks, m)
4. for j = 0, . . . , m − 1
5. if |Sj | ≥ ξ
6. i← j mod l
7. value← Θ(Sj , 0, c)
8. if value ≥ T ∗

9. ones[i]← ones[i] + 1
10. else
11. zeros[i]← zeros[i] + 1
12. for j = 0, . . . , l − 1
13. if ones[j] > zeros[j]
14. WD[j]← 1
15. else if ones[j] < zeros[j]
16. WD[j]← 0
17. else
18. WD[j]← ×
19. return WD

Fig. 15. Watermark detection algorithm

data setD is unknown. Under these assumptions Mallory is faced
with the dilemma of trying to destroy the watermark and at the
same time of not destroying the data. We classify the attacks
preformed by Mallory into three types, namelydeletion, alteration
and insertionattacks.

Deletion Attack:Mallory deletesα tuples from the marked data
set. If the tuples are randomly deleted, then on average each

partition losesα
m tuples. The watermarking techniques available

in literature rely on special tuples, referred to as marker tuples.
Agrawal et al. [1] use marker tuples to locate the embedded bit
and Sion et al. [23] use marker tuples to locate the start and
end of data partitions. The embedded watermark is a stream of
bits where the marker tuples identify the boundaries between
these bits in the stream. The successful deletion of marker tuples
deletes these boundaries between the bits of the watermark stream,
which makes such marker based watermarking techniques [1],
[23] susceptible to watermark synchronization error. For example,
using the watermarking technique presented by Sion et al. [23],
Figure 16(a) shows an example partitioned data set and the
corresponding majority voting map used to decode the embedded
watermark. The marker tuples are represented by the shaded
cells; these markers are used to identify the start and end of
each partition. The embedded bit is noted in each partition;the
embedded watermark is “101010”. Now if Mallory successfully
deletes the marker tuple controlling the first bit(b0), this results in
the deletion of the first bit, see Figure 16(b). The decoder, unaware
of the deleted bit, will generate “×10101” instead, which is the
result of decoding a shifted version of the embedded bits. This
results in a watermark synchronization error at the decoder, see
Figure 16(b). Moreover, the resynchronization of the watermark
bit stream becomes more complicated in the presence of flipped
bits due to other decoding errors. Thus the successful deletion of
a single marker could result in a large number of errors in the
decoding phase. To avoid watermark synchronization errorsin
marker based techniques them marker tuples should be stored,
as indicated by Sion et al. in [23]. Note that this violates the
requirement that the watermark decoding is blinded.

On the other hand, our partitioning technique is resilient to
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such synchronization errors as it does not rely on marker tuples
to locate the partition limits; instead our partitioning technique
assigns tuples to partitions based a different approach as discussed
in Section IV. We also use erasures to indicate the loss of
a bit due to insufficient partition size and thus to maintain
synchronization and ensure that our technique is resilientto the
watermark synchronization error.
Alteration Attack: In this attack Mallory alters the data value of
α tuples. Here Mallory is faced with the challenge that altering
the data may disturb the watermark; however at the same time
Mallory does not have access to the original data setD, thus
may easily violate the usability constraints and render thedata
useless. The alteration attack basically perturbs the datain hope of
introducing errors in the embedded watermark bits. The attacker
is trying to move the hiding function values from the left of the
optimal threshold to the right and vice versa. However, using the
conflicting objectives in encoding the watermark bits, thatis the
maximizing the tail count forbi = 1 and minimizing the tail
count for bi = 0, maximizes the distance between the hiding
function values in both cases; thus it makes it more difficult
for the attacker to alter the embedded bit. In addition, by the
repeated embedding of the watermark and the use of majority
voting technique discussed in Section VII this attack can easily
be mitigated.
Insertion Attack: Mallory decides to insertα tuples to the data
setDW hoping to perturb the embedded watermark. The insertion
of new tuples acts as additive noise to the embedded watermark.
However, the watermark embedding is not based on a single tuple
and is based on a cumulative hiding function that operates on
all the tuples in the partition. Thus the effect of adding tuples
is a minor perturbation to the value of the hiding function and
thus to the embedded watermark bit. Marker-based watermarking
techniques may suffer badly from this attack because the addition
of tuples may introduce new markers in the data set and thus
lead to the addition of new bits in the embedded watermark
sequence. Consequently, this results in watermark synchronization
error. Using the example mentioned earlier, Figure 16(a) shows
a partitioned data set and its corresponding majority voting map
using the Sion et al. technique [23], where the embedded water-
mark is “101010”. Now if Mallory successfully adds a marker
tuple after the third marker tuple, this results in the addition of a
new bit between(b2) and(b3); see Figure 16(c) where the black
cell represents the added marker tuple. The decoder, unaware
of the added bit, will generate “010111” instead, which is the
result of decoding a shifted version of the embedded bits. This
problem is further complicated in the presence of bit errorsin the
watermark stream. To ensure synchronization at the decoderthe
marker based watermarking techniques require the storage of the
m marker tuples to ensure successful partitioning of the dataset
in the presence of the insertion attack [23]. On the other hand,
our partitioning algorithm is not dependent on special marker
tuples which makes it resilient to such attack, and watermark
synchronization is guaranteed during decoding.

The experimental results presented in Section IX support the
claims made about the resilience of our watermarking technique
to all the above attacks.

IX. EXPERIMENTAL RESULTS

In this section we report the results of an extensive experimental
study that analyzes the resilience of the proposed watermark-

ing scheme to the attacks described in Section VIII. All the
experiments were performed on Intel Pentium IV CPU 3.2GHz
with 512MB RAM. We use real-life data from a relatively small
database that contains the daily power consumption rates of
some customers over a period of one year. Such data sets are
made available through the CIMEG2 project. The database size
is approximately 5 Megabytes; for testing purposes only a subset
of the original data is used with 150000 tuples. We usedc = 75%,
a 16 bit watermark, a minimum partition sizeξ = 10, a number of
partitionsm = 2048, the data change was allowed within±0.5%.
The pattern search algorithm was used for the optimization.The
optimal threshold was computed using the technique used in
Section VI to minimize the probability of decoding error. The
watermarked data set was subject to different types of attacks
including deletion, alteration, and addition attacks. Theresults
were averaged over multiple runs. Similar results were obtained
for both uniform and normally distributed synthetic data. We show
that it is difficult for Mallory to remove or alter the watermark
without destroying the data.

We assessed computation times and observed a polynomial
behavior with respect to the input data size. Given the setup
described above, with a local database we obtained an average of
around 300 tuples/second for watermark embedding, while detec-
tion turned out to be at least approximately five times as fast. This
occurs in the non-optimized, interpreted Java proof of concept
implementation. We expect major orders of magnitude speedups
in a real-life deployment version. For comparison purposes, we
have implemented the Sion et al. [23] approach with no stored
markers, where the marker tuples are generated on the fly during
both encoding and the decoding phases.
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Fig. 17. Resilience to deletion attack.

A. Deletion Attack

In this attack Mallory randomly dropsα tuples from the water-
marked data set, the watermark is then decoded and watermark
loss is measured for differentα values. Furthermore, in this test
we compare our implementation with Sion et al. (No Stored
Markers) [23] approach. Figure 17 shows the experimental results;
they clearly show that our watermarking technique is resilient to
the random deletion attack. Using our technique the watermark
was successfully extracted with100% accuracy even when over

2CIMEG: Consortium for the Intelligent Management of the Electric Power
Grid. http://helios.ecn.purdue.edu/∼cimeg.
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(a) α-selected insertion attack
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(c) (α, β)-insertion attack

Fig. 18. Resilience toα-insertion and(α, β)-insertion attacks

80% of the tuples were deleted. On the other hand, the technique
by Sion et al. badly deteriorates when only10% of the tuples
were deleted. We believe that high resilience of our watermarking
technique is due to the marker-free data partitioning algorithm that
is resilient to the watermark synchronization errors caused by the
tuple deletion.

Because our technique is highly resilient to tuple deletion
attacks the watermark can be retrieved from a small sample ofthe
data. This important property combined with the high efficiency
of our watermark detection algorithm makes it possible to develop
tools able to effectively and efficiently search the web to detect
illegal copies of data. We could think of an agent-based toolwhere
the agent visits sites and selectively tests parts of the stored data
sets to check for ownership rights. Such a technique would only
need inspect20% of the data for successful watermark detection.

B. Insertion Attack

In this experiment Mallory attempts to add a numberα of
tuples hoping to weaken the embedded watermark. However, by
adding tuples to the current data Mallory is adding meaningless
data to the current data. Mallory could simply generate the new
tuples by replicating values in randomly selected existingtuples;
we refer to such attack as theα-selected insertion attack. Mallory
could randomly generate the tuple values by generating random
data from the range(µDW

−βσDW
, µDW

+βσDW
), whereµDW

andσDW
are the mean and standard deviation of the data setDW

respectively. We refer to such attack as the(α, β)-insertion attack.
Figure 18(a) shows a comparison between our approach and the

Sion et al. (No Stored Markers) [23] approach. The comparison
shows that our technique is resilient toα-selected attack even
when α is up to 100% of the data set size. While on the other
hand, the Sion et al. marker based technique deteriorates just
after adding10% of the data set size. Figure 18(b)&(c) show
the resilience of our watermarking technique to(α, β)-insertion
attack, where the watermark was recovered with100% accuracy
even when up to80% of the data set size tuples were inserted.

C. Alteration Attack

We tested our watermarking technique against two types of
alteration attacks namely the fixed and the random(α, β) alter
attacks. In the fixed-(α, β) alter attack Mallory randomly selects
α tuples and alters them by multiplyingα2 tuples by exactly(1+β)

and the otherα2 tuples by(1 − β). In this attack, the value ofβ
is fixed. In the random-(α, β) alter attackα tuples are randomly
selected;α2 tuples are then multiplied by(1+x) and the otherα2
tuples by(1 − x), wherex is a uniform random variable in the
range[0, β].

Figures 19(a)(b)(c) show the behavior of our watermarking
technique subject to the fixed-(α, β) alter attack. As we can see
from Figure 19(a) the watermark is decoded with100% accuracy
even when100% of the tuples are altered byβ > 1.0%. This
shows the strong resilience of our watermarking technique to
fixed alteration attacks. Furthermore, Figure 19(b) shows the
number of corrupted tuples as the attack proceeds. Tuples that
exceed the usability constraints are referred to as corrupted tuples.
Figure 19(b) shows that afterβ > 0.9% a sudden increase in
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Fig. 19. (a-c) Resilience to fixed-(α, β) alter attacks. (d-f) Resilience to random-(α, β) alter attacks.

the number of corrupted tuples; such an increase is due to the
usability constraints used in this experiment, which are set to
±0.5%. Figure 19(c) is a clear description of the dilemma that the
attacker is facing. The dotted lines show the number of corrupted
tuples, while the solid lines are represent the detected watermark
accuracy. By increasingβ the attacker is able to corrupt the
watermark to80% accuracy, however, at the same time75% of
the tuples are corrupted. Similar results were experiencedfor the
random-(α, β) attack which are shown in Figures 19(d)(e)(f).

Experiments performed at lower usability constraints still
showed similar resilience trends of the watermark encoding
and decoding when subject to above attacks. Table I shows a

comparison between our technique and Sion et al. technique based
on the different watermark attacks and main characteristics of
each technique.

X. CONCLUSION

In this paper, we have presented a resilient watermarking
technique for relational data that embeds watermark bits inthe
data statistics. The watermarking problem was formulated as a
constrained optimization problem, that maximizes or minimizes
a hiding function based on the bit to be embedded. Genetic
algorithm and pattern search techniques were employed to solve
the proposed optimization problem and to handle the constraints.
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TABLE I

COMPARISON BETWEEN OUR TECHNIQUE AND THE TECHNIQUE BYSION ET AL . (NO STORED MARKERS) [23].

Our Technique Sion et al. Technique
(No Stored Markers)

Deletion Attack Resilient to random tuple deletion attack; 100% wa-
termark accuracy even when more than 80% of the
tuples are deleted.

When the marker tuples are computed on the fly, the
technique is not resilient to the random tuple deletion
attack. The watermark accuracy deteriorates to 50%
when only 10% of the tuples are deleted.

Insertion Attack Resilient to random tuple insertion attacks; 100%
watermark accuracy even when more than 100% of
the original number of tuples is inserted in theα-
insertion attack and similar watermark accuracy when
subject to the(α, β)-insertion attacks.

When the marker tuples are computed on the fly, the
technique is not resilient to random tuple insertion
attacks; watermark accuracy deteriorates to 50% when
only 10% of the tuples are inserted.

Alteration Attack Resilient to random tuple alteration; 100% watermark
accuracy even when 100% of the tuples are altered
by β > 1.0% and β > 3.0% for the fixed-
(α, β) and random-(α, β) attacks respectively. The
watermark embedding technique exploits the feasible
alteration space by solving an optimization problem
to enforce the competing objectives based on the
bit to be inserted. Furthermore, decoding threshold
is computed based on the embedding statistics to
maximize the probability of decoding error.

It is not clear how the bit embedding is performed;
no systematic alteration scheme is defined that in-
vestigates the feasible embedding space. Thresholds
are not based on embedding statistics and are chosen
arbitrarily by the user without any optimality criteria.

Synchronization Error Not vulnerable to such error, because the technique
does not require special marker tuples for the correct
partition reconstruction.

Highly vulnerable to such error, due to the depen-
dency on special marker tuples to locate partitions.
Requires the storage of allm marker tuples for the
correct partition reconstruction.

Decoding Threshold Uses an optimal thresholdT ∗ that minimizes the
probability of decoding error.

Uses two decoding thresholds which are arbitrarily
decided by the user without any optimality criteria.

Furthermore, we presented a data partitioning technique that does
not depend on special marker tuples to locate the partitionsand
proved its resilience to watermark synchronization errors. We
developed an efficient threshold-based technique for watermark
detection that is based on an optimal threshold that minimizes
the probability of decoding error. The watermark resilience was
improved by the repeated embedding of the watermark and using
majority voting technique in the watermark decoding phase.
Moreover, the watermark resilience was improved by using mul-
tiple attributes.

A proof of concept implementation of our watermarking tech-
nique was used to conduct experiments using both synthetic and
real-world data. A comparison our watermarking technique with
previously-posed techniques techniques shows the superiority of
our technique to deletion, alteration and insertion attacks.
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