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Abstract— Sensor networks are designed with the assumption
that nodes are willing to collaborate. However, the open collabo-
ration of nodes introduces privacy and security issues. Therefore,
ensuring privacy in wireless sensor networks is a challenging
task. Based on a multilevel security paradigm, in this paper we
present a hierarchical key generation and distribution protocol
for wireless sensor networks. We show by simulation results that
our key generation scheme outperforms the existing hierarchical
key generation schemes thus it is suitable for sensor networks
with limited computation and energy capabilities. Furthermore,
we present an energy efficient key diffusion protocol. We also
discuss the possible security threats involved with the proposed
protocol and provide suitable solutions to such threats.

I. INTRODUCTION

Sensor networks are characterized by a large number of
wireless nodes distributed over a region for sensing and mon-
itoring purposes. One of the main assumptions when designing
sensor networks is that nodes are willing to collaborate with
one another to process, aggregate and forward the collected
data. However, the data collected by sensors varies in security,
sensitivity and importance levels, thus the collaboration of
nodes introduces several security and privacy challenges [1].
For example, sensors located close to military locations pro-
duce highly sensitive data while sensors located at less critical
locations produce less sensitive data. The open collaboration
among these sensors can cause privacy violations. Therefore,
security techniques should be in place to prevent security
breaches by managing the collaboration among the sensor
nodes.

In order to address this problem, we propose an approach
based on a multi-level security model [2]. The proposed
approach assigns each sensor an access class from a partially
ordered set of access classes, thus resulting in a hierarchical
organization of sensors. The security class of each sensor
is decided based on the contextual information of both the
sensor and the collected data. The hierarchical access structure
represents the sensor network security policy and controls
the data flow among the sensor nodes. To implement the
proposed approach, several issues have to be addressed. An
important requirement is that hierarchical keys should be used
for data encryption. This allows nodes at high access classes to
decrypt data sent by lower access classes. The generation and

distribution of the hierarchical key should be suitable for the
sensor network environment. Other issues include the design
of special data retrieval, data fusion and querying techniques
that adhere to the hierarchical access control paradigm to
prevent security and privacy breaches.

In this paper, we propose a hierarchical key generation
and distribution scheme that addresses the sensor network
computational, energy and power limitations. The proposed
key generation algorithm offers a novel, scalable and efficient
technique for establishing hierarchical keys for sensor net-
works with low computational and energy requirements. The
proposed algorithm is based on low cost hashing functions
that enable the efficient key generation. Moreover, we pro-
pose an optimized version of the hierarchical key generation
algorithm for tree shaped hierarchies. Consequently, a hybrid
technique can be used to further optimize key generation for
any hierarchical structure.

We also propose a hierarchical key distribution protocol that
enables the diffusion of the hierarchical keys in an efficient and
systematic manner. The technique allows the diffusion of keys
from high access levels to lower access levels and ensures the
secure dissemination of the hierarchical keys in the network.
Moreover, the structures generated for key distribution are used
for data collection, data fusion and query propagation

The rest of the paper is organized as follows. In Sections II
and III we discuss the related work and the preliminaries.
Our hierarchical key generation algorithm is discussed in
Section IV. The optimized key generation technique for tree
hierarchical structures and the hybrid technique for general
hierarchical structures are presented in Section V. We then
show simulation results comparing several key generation
techniques to our proposed technique in Section VI. Our
hierarchical key diffusion protocol is presented in Section VII.
In Section VIII we discuss possible security threats and present
suitable solutions to such threats. Concluding remarks and
future work are added in Section IX.

II. RELATED WORK

Several key management protocols proposed in literature
[3][4][5] provide hierarchical key generation and management.



However, most of the available techniques depend on expo-
nentiation which is a computationally expensive operator. In
this section we review some of the available techniques to
show the high dependency on exponentiation.

In [5] the author proposes a time bound cryptographic key
assignment scheme. This scheme uses ideas similar to RSA
[6]. Given a set of access classes C1, C2, . . . , Cm and a binary
relation ≤ that partially orders the set of access classes, the
algorithm generates for every class Ci a key Ki, a public num-
ber ei and a private number di. The numbers e1, e2, . . . , em

are randomly generated so that they are relatively prime to
the Euler totient function φ(n1). Where n1 is the product of
two large primes. The private number di is computed such
that eidi mod φ(n1) = 1. Consequently, for every class Ci

a key Ki is computed using the following relation Ki =

a

∏
Ck≤Ci

dk (mod n1), where a is a randomly selected integer
such that 1 < a < n1. If Ci ≤ Cj then Kj could be used

to generate Ki, that is, Ki = a

∏
Ck≤Cj,Ck �≤Ci

ek

(mod n1).
Therefore exponentiation is the main operator used in this
technique.

Akl et al. [3] proposed a technique that assigns to each
access class Ci an integer ti such that if Ci ≤ Cj then tj |ti (tj
divides ti). A special one way function fm is defined having
the property fmz = fm ◦ fz , where m and z are integers
and ◦ denotes the composition operator. A random number
K0 is chosen, the other keys are calculated using the relation
Ki = fti

(K0). If Ci ≤ Cj then ti = ztj for some integer z
and Ki can be computed by using Kj , z and by applying
the composition property Ki = fti

(K0) = fztj
(K0) =

fz◦ftj
(K0) = fz(Kj). The function fm(K) = Km (mod M)

is chosen so that the above calculation is only possible when
Ci ≤ Cj . The number M is the product of two large primes p
and q. M is made public. Using the selected function fm, the

key generation procedure translates to Ki = Kti
0 = [Ktj

0 ]
ti
tj =

[Kj ]
ti
tj (mod M). This technique depends on exponentiation

for the generation of the hierarchical keys. Moreover, the
generation of the integer ti for all the access classes is difficult
especially with complex hierarchical structures.

Ray et al. [4] proposed a cryptographic solution to imple-
ment access control in a hierarchy that also uses exponentia-
tion extensively in generating hierarchical keys; the ideas are
similar to RSA [6].

The previously proposed solutions [3][5][4] require expo-
nentiation that is computationally expensive and require the
provisioning of public keys which adds to the computational
and communication overhead. As a result such techniques are
not appropriate for sensor networks. Our proposed hierarchical
key generation technique does not use exponentiation. Instead,
it uses the secure hashing operator which is computationally
less expensive. Furthermore, our technique does not require
any public information. As a result it eliminates the compu-
tational and communication costs involved in the exchange of
public information.

III. PRELIMINARIES

A. Cryptographic hash functions

A cryptographic hash function maps strings of arbitrary
length into strings of a fixed length called message digests.
Given a cryptographic hash function h and an input string x it
is computationally easy to compute the message digest h(x).
On the other hand, it is infeasible to compute the original input
string x from the message digest h(x). As it is infeasible
to compute h−1, cryptographic hash functions are one-way
functions. These functions are also designed to be collision
resistant, which means that given a hash function h, it is
infeasible to find two strings x and x′ such that h(x) =
h(x′). In addition to the above properties cryptographic hash
functions are also designed to have some randomness-like
properties, independence of input/output, and unpredictability
of the output when parts of the input are unknown. Such
properties are required for the security of these functions. Hash
functions are used for generating message authentication codes
and pseudo-random numbers.

B. One way hash chains

A one way hash chain (d0, d1, . . . , dn), d0 is randomly
chosen. Given a one way hash function h, the complete one
way hash chain is computed according to the following relation
di = h(di−1) for i > 0. Note that if di is known, then dj

where i ≤ j ≤ n, can be easily computed by repeatedly
applying the one way function. Figure 2 shows an example
hash chain. The chain has the one-way property because
of the complexity of computing the chain in the opposite
direction, which requires solving the inverse hash function.
One way chains are used in many applications including one
time passwords [7], and secure and efficient authentication
protocols for sensor networks [8].

C. Ordering and hierarchical access control structure

Let S be a set of access classes (classes for short) where S =
C1, C2, . . . , Cn and ≤ be a binary relation that partially orders
the set S. The ordering Cj ≤ Ci is used to indicate that class
Ci dominates class Cj . Based on the ordering relation the set
of classes can be organized according to an access hierarchy,
which adequately presents a description of the system policy.
A hierarchy can be defined by a directed acyclic graph (V,E),
where the vertex set V represents the security classes while the
edges set E represents the partial ordering among the vertices.
A path from Ci to Cj exists if and only if Cj ≤ Ci.

The set Children(Ci) denotes the vertex nodes that are
directly connected to Ci, such that Ck ∈ Children(Ci) if and
only if (Ci, Ck) ∈ E. If Ci is a leaf node then Children(Ci)
is empty. The set Parents(Ci) represents the set of vertices
such that Ck ∈ Parents(Ci) if and only if (Ck, Ci) ∈ E. If
Ci is a root node then Parent(Ci) is empty. In a hierarchy
nodes could have multiple parents. Figure 1 shows an example
of a hierarchy.
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Fig. 1. A hierarchy with 6 access classes and 3 leaves

IV. OUR SCHEME

A hierarchical key is a key that is associated with a class
C and allows one to decrypt all information classified at C
and at all classes lower than C in the access hierarchy. To
implement the hierarchical key management and generation
scheme we use secure cryptographic hashing functions as our
main operator. This assures security and reduces the computa-
tional requirements for both key generation and management.
The following notation is used to simplify the discussion that
follows. Let H be a hierarchy describing n access classes Ci,
1 ≤ i ≤ n. Let Ki be the hierarchical key assigned to access
class Ci and Ri is the residual set1 for access class Ci. Our
approach is to generate a hash chain for every leaf node in
the hierarchy. The hash chain starts by a random number at
the root; intermediate hash values are stored at intermediate
nodes while the final hash value is stored at the leaf nodes.
Figure 2 graphically represents the hash chain generation, and
illustrates the notation used.

D0 h(D0) h(h(D0)) . . . . . .

. . . . . .

h(. . . (h(D0)) . . .)

Dm
0D2

0D0
0 D1

0

Fig. 2. Hash chain generation from root to leaf; the one above is the hash
chain, whereas the one below is the residual set chain.

The hash chain can be computed easily in only one direction
which is from root to leaf; the opposite direction is infeasible
because it would require the computation of the inverse hash
function, which is computationally infeasible. As a result
of such approach a parent node has enough information to
compute the hash values of all the nodes below it, however
children nodes cannot compute the hash values of parent
nodes.

The hash values computed for every node are stored in the
corresponding residual set. The residual sets Ri, 1 ≤ i ≤ n are
generated by populating the hash chains for every leaf node.
Figure 3 describes the detailed algorithm used to generate the
residual set for each node in the hierarchy.

The generation of the residual set involves two functions
Generate Residual and Add Residual, assuming we have
access to a secure random number generator and a secure cryp-
tographic hash function. The function Generate Residual

1Residual set is the set containing information required to generate the key.
Residual set Ri is the information required to generate key Ki.

calls Add Residual for every leaf node in the hierarchy.
Add Residual is a recursive function that climbs the hier-
archy from every leaf node to the root node. This function
populates the residual sets of all the parent nodes in the path
to the root node. Note that a node may have multiple parent
nodes, however Add Residual handles this by populating
each parent node with the corresponding hash values. After
applying the algorithm to the hierarchy in Figure 1 the
generated residual sets are reported in Figure 4.

We can observe that leaf nodes have |Ri| = 1, while parent
nodes can have residual sets with higher cardinality depending
on the number connected leaves. Another observation is that
if there are m leaves then the cardinality of the root’s residual
set is m. We define the inclusion property: let Ci and Cj be
two access classes, with residual sets Ri and Rj respectively.
If Ci ∈ Parent(Cj) then Rj ⊆ h(Ri). This indicates that Rj

could be completely computed using the information in Ri.
The algorithms discussed so far generates the residual set

for every node in the hierarchy. Residual sets at the top of
the hierarchy can easily be used to generate the residual sets
of nodes lower in the hierarchy by following the correct hash
chains, while the opposite direction is infeasible due to the
requirement of computing the inverse hash function. As a
result the generation of the hierarchical key should depend
on the computed residual sets. Our approach is to hash the
entries of the residual set to generate the hierarchical key. The
hierarchical key inherits the properties of the residual set.

The Generate Key function generates the hierarchical key
by computing the hash value of the concatenation of all the
elements in the residual set if |Ri| > 1, otherwise key is
equal to the residual set. This condition guarantees that it is
infeasible for nodes in the lower levels to compute the upper
level keys. Figure 5 describes the detailed algorithm used to
generate the keys.

The complexity of the algorithm is embedded in the gener-
ation of the residual sets. However, the generation of residual
sets uses the hashing operator which is a computationally
low cost operator. Key generation from residual sets is a
transformation procedure that also uses hashing as the main
operator. Furthermore, the derivation of lower level keys from
high level keys is achieved by generating a hash chain.

The addition of a new security class to an existing hierarchy

Generate Residual(H)
1. for each j ∈ leaves(H)
2. do Add Residual(H, j, j)

Add Residual(H, i, j)
1. if i == H.root
2. then int hash = Generate Random(seed)
3. else int hash = Add Residual(H, i.parent, i)
4. Ri = Ri ∪ int hash
5. for all k ∈ Parents(j)
6. Rk = Rk ∪ int hash
7. return hash(int hash)

Fig. 3. Generate Residual and Add Residual, algorithms that generate
the residual set
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Fig. 4. The residual set generated at each of the access levels after generating
the hash chains starting from each leaf using the hierarchy in Figure 1

is easily accommodated by recomposing the hash chain start-
ing at the new node. The only issue we see in our technique
is the storage requirement of the residual sets. We address this
issue by proposing an optimization technique that reduces the
size of the residual set. This technique is discussed in the
following section.

V. ALGORITHM OPTIMIZATION

The hierarchical key generation algorithm could be opti-
mized by reducing the size of the resulting residual sets. In
this section we start by presenting an optimization technique
that is used for tree shaped hierarchies. Then we propose a
hybrid technique that is used to optimize residual sets for any
hierarchical structure.

A. Tree shaped hierarchies

Our optimization technique exploits properties of cryp-
tographic hash functions, namely the independence of in-
put/output and the one-way property. Assume the hierarchy
is a tree and that each node has only one parent. Then, our
proposed optimization technique ensures that |Ri| = 1 for
1 ≤ i ≤ n. It assigns to each access class Ci the residual value
of h(Rparent(i)×2mi), where mi is the order of node i and is
determined as follows: Let Parent(i) have a total of l children
nodes (including node i); if we order the children nodes from
left to right and assign to each node a unique value from
0 to l−1, then mi is the order of node i in such ordering. The
only exception to such assignment is the root node where its
residual set is assigned a random value. This technique ensures
that each node will only need to store one value in its residual
set, which is the optimal size for the residual set. Access
classes cannot compute the residual set of other nodes at the
same height due to unpredictability and randomness properties

Generate Key(H)
1. Initialize R and K to Null
2. Generate Residual(H)
3. for each node i
4. if |Ri| > 1
5. then Ki = h(concatenate elements of Ri)
6. else Ki = Ri

7. return (K, R)

Fig. 5. Generate Key, to generate the hierarchical key.

of the cryptographic hash functions. Our approach exploits
the interesting property of cryptographic hash functions that
if h(x) is known and f(x) is a deterministic function, where
f(x) �= x, then h(f(x)) is not predictable by knowing only
h(x). The powers of 2 can be efficiently computed by using
left shifts which is a computationally low cost operation.

Generate Residual Tree(H, Random Num)
1. H.root.R = Random Num
2. Populate Children(H, H.root)

Populate Children(H, p)
1. m = p.num children
2. k = m − 1
3. while k ≥ 0
4. p.child[k].R = h(2k × p.R)
5. Populate Children(H, p.child[k])
6. k = k − 1

Fig. 6. Generate Residual Tree and Populate Children, algorithms
that generate optimized residual set for tree hierarchy

Figure 6 reports the detailed algorithm used to generate
the residual set for each node in the tree hierarchy. The
function Generate Residual Tree starts by assigning a ran-
dom number to the residual set of the root of the hierarchy.
Then Populate Children is called to recursively populate the
residual sets of all the nodes below the root node. The appli-
cation of Generate Residual Tree on an example hierarchy
is shown in Figure 7.
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Fig. 7. A three level hierarchy example showing the optimization adopted
in the generation of the residual set and hierarchical keys for a tree.

B. Hybrid approach

The hybrid technique uses both the Generate Residual
and Generate Residual Tree to optimize the residual set
of complex hierarchical structures. A complex hierarchy H
is partitioned into tree partitions and non-tree partitions.
Tree partions are maximal trees with nodes that are sin-
gle parents and do not share the parenthood of any other
node. The tree partitions Ht1 ,Ht2 , . . . , Htn

are replaced
by super nodes St1 , St2 , . . . , Stn

. The new hierarchy is re-
ferred to HS . Performing Generate Residual(HS) gen-
erates the residual set for all the nodes in HS includ-
ing the super nodes. For every super set Sti

the function
Generate Residual Tree(Hti

, Sti
.R) is called with argu-

ments Hti
as the input hierarchy and the residual set of Sti

as the random number. This populates the tree partitions with
the optimized residual set. Figure 8 shows the pseudo code
for the hybrid algorithm.



Figure 9 shows an example that explains the several steps
followed by the hybrid technique. The hybrid approach pro-
vides an optimal residual set for a complex hierarchy.

VI. SIMULATION RESULTS

In this section we present some experimental results that
compare the computational overhead and memory usage of
our proposed hierarchical key generation algorithm to other
hierarchical key generation algorithms in literature.

A. Computational overhead

The experimental results presented in this section show
the superiority of our proposed algorithm with respect to the
exponentiation dependent algorithms. In these experiments the
Wen-Guey technique [5] is used to represent the exponentia-
tion based hierarchical key generation techniques. A binary
tree is used as the input access class hierarchy for the system.
The hierarchy size represents the number of node in the
hierarchy, which is related to the height of the binary tree.

In the first experiment the key size was fixed to 512 bits and
hierarchy size was varied. The execution time for the Wen-
Guey technique, our proposed technique and our optimized
version were measured. This experiment captures the behavior
of the key generation algorithms with respect to different
hierarchy sizes. Figure 10 shows the simulation results for
a key size of 512 bits. Our proposed techniques are always
below the Wen-Guey technique for all the hierarchy sizes. We
carried out other experiments with different key size values.
However, these experiments show the same trends as in the
results reported.

The second experiment uses a fixed hierarchy size while
varying the key size. It analyses the performance of the key
generation technique for different key sizes. Figure 11 shows
the simulation results for a hierarchy of size 31. As the key
size increases the running time of the Wen-Guey increases ex-
ponentially, while the running time of our proposed algorithms
does not show considerable increase.

The presented evaluation results show that our proposed
techniques have a low computational cost even for large hier-
archy sizes and large key sizes. All such properties make our
proposed technique the best candidate for the sensor network

Algorithm: Hybrid algorithm pseudo code
Input: Hierarchy H
Output: Residual sets and Hierarchical keys
Step 1:
Generate the maximal tree partitions
Ht1 , . . . , Htn

Step 2:
Generate HS by replacing each Hti by a
supernode Sti

Step 3:
Compute Generate Residual(HS)
Step 4:
for each supernode Sti

Generate Residual Tree(Hti , Sti .R)

Fig. 8. Pseudo code describing the hybrid algorithm.
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environment. Having a computationally low cost algorithm
reduces the costs required for key generation and re-keying
operations.

B. Memory requirements

The memory requirements mainly include the memory
required to store the keys, the residual sets and public key
information. Assuming the access class is a full binary tree
with with N nodes and height h = �logN�. Table I reports
the storage requirement for Wen-Guey, and our proposed
techniques.

TABLE I

HIERARCHICAL KEY STORAGE REQUIREMENTS.

Technique Key storage Public keys storage
Wen-Guey O(N) O(N)
Hash Tree O(NlogN) None
Optimized Hash Tree O(N) None

VII. (HKDP): HIERARCHICAL KEY DIFFUSION PROTOCOL

The previous sections discussed the approaches required
to efficiently generate the hierarchical keys. However, the
challenge to be addressed next is how to efficiently and
securely deliver the generated key to the corresponding sensor
nodes. The hierarchical keys cannot be embedded in the sensor
nodes before deployment because the security access class
of a node is dependent on the context of the node and the
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size fixed to 31.

sensed data. In addition, broadcasting the hierarchical keys is
not a feasible solution because it defeats the purpose of having
secret keys. As a result, a key distribution protocol is needed
to manage the secure distribution of the generated keys. In
this section we propose a hierarchical key distribution protocol
that accounts for sensor network energy constraints by using
energy efficient algorithms. We will refer to our proposed key
distribution protocol as the hierarchical key diffusion protocol
(HKDP). The data structures developed for HKDP are also
useful for data collection, data fusion and query propagation
in sensor networks. HKDP is built over the existing network
routing protocols which enables it to function easily over
already designed architectures.

We assume that the sensor network is partitioned into groups
called clusters; each node is a member of only one cluster.
Every cluster has a unique identifier and a cluster head. The
cluster head is responsible for the management of all the
nodes in the cluster. A base station is located at the border
of the network for global network management and data
collection. The system can be easily extended to accommodate

multiple coordinated base stations. HKDP is organized into the
following four phases:

A. Phase 1: Access class assignment

The access class of each node is decided based upon
the contextual information of both the node and collected
data. For example, contextual information includes the node
location, node energy level, node computational capabilities,
data quality, and data sensitivity. Appendix I reports examples
contextual information that could be used in access class
assignment. A trusted security module in the sensor node col-
lects the required context information and then computes the
appropriate access class from a set of access classes ordered
in a hierarchy. The relation mapping context information to
access classes is dependent on the system policy.

A cluster could contain nodes belonging to different access
classes. We define the access class of the cluster as the least
upper bound (lub)2 of the access classes of all the nodes in
the cluster. The cluster head takes the same access class as the
cluster.

B. Phase 2: Connecting clusters with the same access classes

Clusters belonging to the same access class should be
connected to enable efficient exchange of information among
such clusters. Clusters communicate with one another not
only for key distribution but for several other reasons such
as data collection, data fusion and query propagation [9]. A
distributed minimum spanning tree (MST ) is generated to
provide connectivity between clusters with the same access
class. Clusters at Ci form MSTi. To generate the MST ,
energy efficient multicast tree generation schemes [10], [11]
are used. However, the detailed MST generation technique is
out of scope of this paper.

To maintain the generated MST , each cluster in the MST
is only required to store the addresses of its parent cluster
and its descendant clusters in the MST . Furthermore, to
ensure reliability and connectivity of the clusters in the MST ,
proactive techniques [12] are used for the reconstruction of the
MST if nodes fail, move or decide to leave the network.

C. Phase 3: Soft links and connecting MSTs of related
access classes

To enable the collaboration of clusters belonging to dif-
ferent access classes, a means for connecting such clusters
is required. However, this collaboration should satisfy the
constraints imposed by the hierarchical access control policy.
For this reason, we cannot connect any clusters together.
Using the fact that high level hierarchical keys can be used
to generate lower level hierarchical keys, high level clusters
should be connected to clusters that they dominate. Let Ci and
Cj be two classes such that Ci ≤ Cj . Suppose that clusters at
access class Cj wish to collaborate with clusters at Ci. Clusters

2This is consistent with the notion that a set of access classes being partially
ordered set. Here we assume that a cluster cannot have two or more lubs,
which may happen when we have classes that are not comparable under partial
order. However this problem is easily addressed by letting clusters take more
than one access class.
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Fig. 12. The different phases of the hierarchical key diffusion protocol.

at Ci could be connected to clusters at Cj by connecting
MSTi and MSTj . To connect MSTi and MSTj links should
be generated between them, these links are referred to as soft
links SLinkij .

The generation of soft links between MSTi and MSTj is
formulated as follows. Let MSTi and MSTj be two MSTs;
let k ∈ MSTi and l ∈ MSTj be two clusters and let akl

be the cost of connecting them. The problem is to choose the
pair (k, l) such that akl is minimal, such link is the soft link
SLinkij . The cost akl is derived from several metrics such as
distance, energy level, hop count and other routing metrics.

To generate SLinkij nodes in MSTj we compute the
minimum cost to connect to MSTi. The cluster with the
minimum link cost is selected and the soft link Slinkij is
generated. The overall generated tree formed by connecting
the MSTs at different access levels is referred to as a diffusion
tree. The diffusion tree is used for key distribution and several
other applications such as data collection, data fusion and
query propagation.

D. Phase 4: Hierarchical key diffusion

To ensure the security of the transmitted key, we assume
a public key infrastructure (PKI) existing between each clus-
ter pair. However, the PKI system is only used during the
exchange of hierarchical keys to avoid the high computation
costs of using the PKI.

The diffusion tree is the main backbone that enables the
efficient distribution of the hierarchical key. The base station
generates the hierarchical keys, and sends only the highest
level key(s) to clusters operating at the highest access class.
In this design the base station is only required to know the
location of the high level clusters; this reduces the cost of
knowing the location of clusters at all access levels. The high-
est level key is propagated to the corresponding high access
class MST . Furthermore, the lower level key is computed by
the high access class clusters and is injected into the low access
class MST via the soft links. Consequently, the key diffuses in
a hierarchical manner from class to class until all the clusters
are populated with their corresponding key. Moreover, once a
cluster receives its corresponding hierarchical key the cluster

head computes and distributes the keys required by the nodes
inside the cluster.

Figure 12 illustrates through an example the various steps
involved in assigning the access levels, building the MSTs,
soft links and key diffusion. Figure 13 shows the timeline of
key diffusion. When no clusters operate at high access levels
the base station forwards the corresponding keys to lower level
clusters. This ensures the successful key diffusion for different
access class distributions.

BS to MST5

K5 K4

K3

MST5 to MST4

MST5 to MST3

MST4 to MST2

K2

K1

MST4 to MST1

Fig. 13. Hierchical key diffusion in the network.

VIII. SECURITY ANALYSIS

In this section we discuss the security attacks that could be
performed on the proposed key diffusion protocol. We also
provide suitable solutions that eliminate the threats caused by
such attacks. We assume the sensor nodes are rational and
are willing to collaborate with each other. This assumption
is needed to ensure the functionality of the basic network
operations.

• Compromised Nodes: Suppose an attacker captures a
sensor node and is able to acquire the keys stored in the
node’s memory. If the node is at access class Ci, then
by capturing this node the key Ki is exposed and all the
keys Kj such that Cj ≤ Ci are also exposed. However,
to cope with this threat we make the assumption made
in [13], that the sensor nodes are tamper-proof. Another
solution to this problem is to periodically distribute new
keys. Keys derived from nodes are thus valid only up to
the next periodic key update.

• Incorrect access class request: Suppose a node cheats
by requesting an access class that does not match its



context. However, the cheating node’s context informa-
tion could be easily estimated by the neighboring nodes.
Consequently, neighboring nodes can also estimate the
correct access class of the cheating node. Note that we
are assuming that cheating nodes do not cooperate with
one another.

• Eavesdropping: Let X , Y and Z be nodes and CX ,
CY and CZ be their access classes respectively. Let the
access classes be ordered such that CZ ≤ CY ≤ CX .
Suppose nodes X and Y are communicating and node Z
is trying to eavesdrop. Nodes X and Y encrypt the data
they exchange by using KY as the session key. However,
node Z will not be able to decrypt the data because
KY cannot be derived from KZ . Therefore all data
transmissions are secure against eavesdropping threats.
Moreover, hierarchical keys are transmitted using the PKI
system which ensures key secrecy during key diffusion.

• Unauthorized communication: Let CX �≤ CY and CY �≤
CX , thus CX and CY are not comparable under the
partial order. As a result of such ordering it is not possible
to determine KX from KY or KY from KX . This renders
the communication between X and Y impossible using
neither KX nor KY . Thus unauthorized hierarchical
communication between nodes is prevented.

• Denial of service attacks: A denial of service attack could
be caused by repeatedly requesting re-keying. There are
several steps involved in re-keying namely key generation
and key diffusion. Most of the cost of re-keying is
attributed to key diffusion. The repeated unnecessary re-
keying generates traffic that congests the network and
depletes the sensors’ energy. This problem is addressed
by using a proactive approach which involves periodic
re-keying instead of allowing nodes to reactively request
re-keying.

• Covert channels: Let X , Y and Z be nodes and CX ,
CY and CZ be their access classes respectively. Let the
access classes be ordered such that CZ ≤ CY ≤ CX .
Suppose nodes X and Y are communicating and node Z
is intercepting such communication. Node Z is not able
to encrypt the communication channel. However, the fact
that node Z knows that X and Y are communicating
generates a covert channel. This covert channel cannot be
avoided due to collaborative nature of sensor networks.
Sensor nodes are required to cooperate to perform the
routing operations and this covert channel would always
exist if Z is in the routing path between X and Y .

To enhance the security of the system, nodes that do not be-
have correctly are removed from their corresponding MSTs,
thus isolating them from the network. Furthermore, keys are
not forwarded to such nodes during re-keying operations. This
completely isolates the node because all the data exchanges
in the network are encrypted. A special case is when cluster
heads are misbehaving. In this case, reclustering is needed
after they are isolated to elect new cluster heads. This ensures
both connectivity and security of the network. Clearly, this

technique enhances the system fault tolerance.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a hierarchical key gen-
eration algorithm that is suitable for sensor networks with
computational and energy constraints. We have proposed a
residual set optimization technique for tree hierarchies and a
hybrid optimization technique for general shaped hierarchies.
Our simulation results show that our proposed hierarchical key
generation algorithm is computationally less expensive than all
the exponentiation based key generation algorithms. Moreover,
our proposed algorithm requires no public information, which
reduces the communication costs required for key derivations.

Furthermore, we have presented the key diffusion protocol.
The presented protocol uses energy efficient algorithms in
all its phases to satisfy the energy limitations of wireless
sensor networks. We further have discussed the security threats
involved with the proposed protocols and provided suitable
solutions to such threats.

In future, one direction we plan to pursue is the development
of policies and techniques to specify access class assignments
to data and sensor nodes. We also plan to investigate the
problem of integrity in sensor networks.
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APPENDIX I
CONTEXT INFORMATION

Context is any information that can be used to characterize
the situation of an entity [14]. In sensor networks an entity
includes sensor node, base station or any object that interacts
in the network. Context information is used to assign access
classes to nodes in the sensor network; such assignment is
dependent on the system security policy. Here we provide
some useful contextual information used to assign access
classes to sensor nodes.

• Node location: Node location implies the sensitivity of
the sensed data. For example nodes located close to
military locations are assigned high level access classes
because such nodes sense highly sensitive data.

• Node energy level: Sensor nodes depend on batteries as
their primary source of energy. The energy level is one of
the factors that indicate the node’s capability of surviving
in the network, thus high energy nodes are assigned high
access classes.

• Number of neighboring nodes: This parameter is an
indication to connectivity of the node. Nodes with large
number of neighbors are good cluster head candidates.
Cluster heads are responsible for several organizational
tasks thus they are assigned to high access classes.

• Relative distance between neighboring nodes: This metric
indicates the relative distance between neighboring nodes.
It is related to power required for radio transmission.

• Errors: Errors including number of transmission errors,
noisy channel errors, retransmission errors, collisions
encountered. All such errors indicate the reliability of the
node in the network.

• Date/time: The access class of nodes depends on the
temporal dimension. Data sensed at certain periods of
time is assigned to different access classes. For example
consider sensors deployed at the entrance of a bank for
surveillance purposes; at night the data sensed is assigned
a high access class as such data may indicate possibilities
of a robbery.

• Data quality: Data quality is captured by analyzing
the processing, sampling and sensing errors. The level
of trustworthiness of data is indicated by this metric.
High quality data is assigned to high security access
classes. For example a sensor taking photos with an object
blocking its view produces low quality data.

• Data sensitivity and resolution: As more information
could be extracted from high resolution data, such data
is assigned high access levels.


