
Visualization Based Policy Analysis: Case Study in
SELinux∗

Wenjuan Xu, Mohamed Shehab, Gail-Joon Ahn
Dept. of Software and Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA

{wxu2,mshehab,gahn}@uncc.edu

ABSTRACT
Determining whether a given policy meets a site’s high-
level security goals can be difficult, due to the low-level na-
ture and complexity of the policy language, and the multi-
ple policy violation patterns. In this paper, we propose a
visualization-based policy analysis framework that enables
system administrators to visually query and visualize SELinux
security policies and to easily identify the policy violations.
We propose and formalize both a semantic substrate and
adjacency matrix visualization techniques for policy visual-
ization. Furthermore, we propose a visual query language for
expressing policy queries in a visual form. Our framework is
targeted towards enabling the average administrator by pro-
viding an intuitive cognitive sense about the policy, policy
queries and policy violations. We also describe our imple-
mentation of a visualization-based policy analysis tool that
provides the functionalities discussed in our framework.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming;
D.4.6 [Operating Systems]: Security and Protection—In-
formation flow controls

General Terms
Security, Verification

1. INTRODUCTION
In computing systems security policies are specified to im-

plement security goals such as access to protected resources,
information flow to and from protected resources, resource
isolation and separation of duty. Policy administration is
a challenging task due to the complexity, and interdepen-
dence of policy rules. This is further exacerbated by the
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large policy size, for example, the Secure-Enhanced Linux
(SELinux) policy includes over 30,000 statements [22]. Ac-
cess control systems can become significantly ineffective if
the implemented policies are not representative to targeted
security goals. Simple policy misconfigurations might allow
an unprivileged process A to write to some resource that
can be read by a privileged process B, causing information
flow from process A to B leading to an integrity violation.
System administrators use policy analysis tools to locate and
correct policy violations. Several policy analysis frameworks
have focused on information flow models [35, 19, 17, 18, 28,
16, 13, 30] to enable policy verification and testing. Policy
analysis frameworks assume that the policy administrator is
a security expert that completely understands and interprets
all the policy rules. Policy analysis requires the administra-
tor to be proficient in a custom text based policy analysis
expressions. Furthermore, such analysis would locate policy
violations; however it would not go further to indicate the
effect of such violations. The output of policy analysis tools
is list of possible violations, which does not give the system
administrator a clear view of how the violation originated
and how it might propagate in the system. Information vi-
sualization [14] enables users to explore, analyze, reason and
explain abstract information by taking advantage of their vi-
sual cognition. Several disciplines have adopted information
visualization mechanisms to better understand and reason
about the collected data. For example, visualization tech-
niques have been adopted in bio-informatics, networks, data
mining, information retrieval, social networks and several
other areas. In the security arena, visualization has been
used to better understand and present data related to net-
work attacks [39, 40, 23, 41], intrusion detection [11, 25, 15,
36] , firewall policies [21, 24, 37], and trust negotiations [38].
In this paper, we propose a policy analysis framework that
is based on information visualization principles to simplify
policy analysis and to provide a better understanding to the
policy administrator.

A policy visualization framework should provide mecha-
nisms to both display and query the policy base. Our frame-
work models the security policy as a policy graph and adopts
both the semantic-substrates [12, 3] and adjacency-matrix
[32, 20] mechanisms to generate policy layouts for display-
ing policy portions. In the semantic substrates mechanism,
the nodes and links expressing policy statements are ar-
ranged based on the semantic classifications, which provides
a systematic approach to trace policy rules. The adjacency-
matrix mechanism provides an intuitive approach to trace
the read and write relationships between subjects and ob-
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jects. By providing simple and descriptive policy graph lay-
outs it enables the policy administrator to intuitively ex-
amine and understand the policy. Another novel module in
our framework is the visual query formulation, that enables
the administrator to build queries against the policy base by
simply dragging and connecting provided query components.
This mechanism follows an approach similar to the query by
example mechanism used for relational databases [26, 27].
Using a graphical query platform enables the average ad-
ministrator to easily probe the policy for violations by spec-
ifying graphical queries, without the need to write any script
or learn a new query language. We implemented our policy
visualization framework and developed a Policy Visualiza-
tion Analysis (PVA) tool. Then we applied it to visualize
and query SELinux policies.

The rest of the paper is organized as follows. Section 2 de-
scribes the related work. Section 3 provides an overview of
SELinux, trusted computing base and information flow mod-
els. In Section 4, we introduce our visualization-based pol-
icy analysis framework. The policy visualization approaches
are discussed in Section 5. The policy query classification
and query execution are presented in Section 6. Our pol-
icy visualization tool (PVA) is presented in Section 7. The
conclusion and future work are discussed in Section 8.

2. RELATED WORK
Previous typical methods and tools developed to analyze

SELinux policies include Gokyo [19, 28, 17, 16], SLAT [10],
PAL [31] and APOL [35]. Gokyo was used to check integrity
of a proposed trusted computing base (TCB) for SELinux.
Integrity of the TCB holds if there is no type that can be
written by a type outside the TCB and read by a type in-
side the TCB, except for special cases in which a designated
trusted program sanitizes untrusted data when it enters the
TCB. Because Gokyo only identifies one common TCB in
SELinux and SELinux has multiple security goals with ob-
viously different kinds of trust relationship, Gokyo can not
cover all the aspects of policy violations. SLAT (Security
Enhanced Linux Analysis Tool) defines an information flow
model and the SELinux policies are analyzed based on this
model. In the information flow model, SLAT characterizes
information flow caused by allowed operations for a given
policy. It defines the information flow relation (write op-
eration transfer information from process to resource; read
operation transfer information from resource to process) as
the flow transition. Then through this flow transition re-
lationship, a path is defined to reflect a sequence of events
through which some causal effects are transmitted from the
first process to the last. SLAT also contains an implementa-
tion using information flow model checking. Sarna-Sota et
al. [10] used the SLAT information flow model to implement
a framework for analyzing configuration policies in SELinux;
it is called PAL (Policy Analysis using Logic Programming).
PAL creates a logic program based on an SELinux policy
to make it possible to run queries to analyze the policy.
APOL [35] is a tool developed by Tresys Technology to an-
alyze SELinux configuration policies. Its main features in-
clude forward and reverse domain transition analysis, direct
and transitive information flow analysis, relabel analysis and
type relationship analysis based on user request.

SLAT, PAL and APOL tools require the administrator to
be well versed in SELinux policies to generate meaningful
queries against the policy base to ultimately extract mean-

ingful information. Furthermore, some of these tools pro-
vide graph based visualization mechanisms to aid in policy
analysis, however these mechanisms are not intuitive to the
average administrator. Our policy analysis framework pro-
vides visualization techniques that are usable and intuitive
to the average administrator. Two works in information vi-
sualization are related to our works: Semantic Substrates
and Adjacency Matrices.

Semantic Substrates [3] is a visualization method that gen-
erates graph layouts that are based on user-defined semantic
substrates, which are non-overlapping regions in which node
placement is based on node attributes. Also, users interac-
tively control link visibility to limit clutter and thus ensure
comprehensibility of source and destination. Of course se-
mantic substrates are effective only if there is some categor-
ical attribute or if a numerical attribute can be binned to
form categories. Although there are limitations in the im-
plementation, but the utility of semantic substrates shows
apparent for coping with the complexity of large numbers of
nodes and links. Also, as the node-link based diagram, se-
mantic substrates method shows strong advantages in small
graphs. However, in many situations, the graph maybe very
big and dense. Adjacency matrices [20] are widely used in
graph visualization because they can effectively display a
big and dense graph through interpreting the structural in-
formation buried in a matrix view of a graph. Although
adjacency matrices can be used to visualize both directed
and undirected graphs, it is argued as bad ability in find-
ing the path from one node to another node in the directed
graph.

3. PRELIMINARIES

3.1 SELinux Overview
Security-Enhanced Linux [22] implements the mandatory

access control (MAC) based policies, which are . The MAC
mechanisms are implemented through the Type-Enforcement
model, in which domains are used to label processes, and
types are used to label files and other resources. The policy
rule set specifies how domains can access different types. For
example, a policy defines a domain passwd_t and assigns it
to processes running a specific set of executables used for
password. The policy would allow passwd_t domain to op-
erate on resources with type security_t. The operation is
identified by two pieces of information: a class (e.g., file,
directory, process, socket) and a permission (e.g., read, un-
link, signal, sendto). SELinux defines 28 classes and 120
permissions. For the sake of simplicity SELinux uses type
to interchangeably describe both domain and type. In ad-
dition to Type-Enforcement, SELinux also provides a role
based access control (RBAC) model [22]. A user is assigned
to a role which is an abstraction designed to make policy
rules more concise. Policy rules are introduced to state the
user to role assignments and the role to permission assign-
ments. The set of permissions associated with a role are
specified using types. For all object types, SELinux uses a
role object_r and a user system_u to specify their security
contexts. A domain type can be associated with different
roles and users for different security contexts. Figure 1(a)
shows an example SELinux policy showing the type, domain
and role declarations, a user jdoe operating in the untrusted
domain user_t, the domain-type allow rules, and the secu-
rity context declarations.
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(a) SELinux Policies Example

SELinux Domains Classification

Domain Class. Subjects Examples

System Domains (SD) domains defined for system
services

kernel t, initrc t

Daemons (DAE) domains for system daemons klog t, sendmail t
Program Domains
(PRO)

domains for user programs user xserver t,
passwd t

User Login Domains
(ULO)

domains for authorization of
different users

user t, staff t,
sysadm t

SELinux Types Classification

Types Objects Examples

security types (ST) policy config. related files. security t
device types (DT) files under /device fixed disk device t
file types (FT) files under directory /root,

/etc, etc.
etc t, root t

procfs types (PT) pseudo files under /proc. proc t
devpts types (DE) pseudo files under /dev/pts ptmx t
NFS types (NF) files from an NFS server nfs t
Network types (NE) files for network objects port t

(b) SELinux Type Characteristics

Figure 1: SELinux Example Policy and Classifications

3.1.1 SELinux Type Characteristics
The SELinux types are classified into different categoriza-

tions corresponding to the functions performed by processes
and the operations performed on the different objects [33].
The domain and type classifications are defined as follows:

• Domain Classification: According to the SELinux
policy configuration from NSA [33], domain types in
SELinux can be classified into system domains, user
program domains, and user login domains. System
domains are composed of domains labeled as system
processes (e.g., kernel_t, initrc_t, and init_t) or
daemons (e.g., sendmail_t and ftpd_t). User pro-
gram domains include unprivileged user program do-
mains (e.g., user_xserver_t), administrator program
domains (e.g., sysadm_xserver_t), and some other pro-
gram domains (e.g., logrotate_t and passwd_t). User
login domains are the domains used for user autho-
rization such as user_t, sysadm_t, and staff_t. Due
to the large number of vulnerabilities that have been
found in daemons (e.g.,sendmail_t) we divide system
domains into daemons and general system domains.

• Type Classification: Types in SELinux can be clas-
sified into security types (e.g., security_t), device types
(e.g., fixed_disk_device_t and device_t), file types
(e.g., etc_t), procfs types (e.g., sysctl_kernel_t and
proc_t), devpts types (e.g., ptmx_t), nfs types (e.g.,
nfs_t), and network types (e.g., icmp_socket_t and
port_t). The details of domain and type classifica-
tions are listed in Figure 1(b).

3.1.2 SELinux Policy Security Goals
Loscocco et al. [2] outlined six critical security goals to be

achieved by SELinux security policies, these goals are sum-
marized as follows: (G1) Limiting raw access to data, (G2)
Protecting kernel integrity, (G3) Protecting system file in-
tegrity, (G4) Confining privileged process, (G5) Separating
processes, and (G6) Protecting the administrator domain.
Goals G2, G3 and G6 are focused on integrity protection
of resources that include the boot files, proc files and se-
curity policy related objects. Goal G1 protects both the
integrity and confidentiality of the system device resources,
for example, the write operation to the fixed disk devices is
restricted to the fsck labeled programs for file system consis-
tency checking. Goals G4 and G5 target the implementation

of the principle of the least privilege by restricting access
to certain domains [29]. For example, a mail server process
should only have access to certain resources such as the mail
spool file. These goals are implemented in SELinux policies
by limiting access using the allow/deny rules targeting spe-
cific domains and types. Goal related rules can be identified
by checking the policy allow/deny rules and the affected re-
sources. For example, the policies related to G1, G2, and G3
can be identified by locating rules affecting raw data, kernel
files and systems files respectively. Later, we use the classifi-
cation of goal related policies to analyze the security policies
against these security goals and locate security violations.

3.2 Trusted Computing Base (TCB)
The early understanding of trust was that hardware and

software that had to be trusted was generally equated to the
operating system and the supporting hardware. Then the
concept of the reference monitor was introduced in system
architectures to validate all references by programs against
information security policies [8]. This consequently lead to
the introduction of the Trusted Computing Base (TCB),
which is defined as the part of the system that is respon-
sible for enforcing the information security policies of the
system [1]. TCB includes not only the reference valida-
tion mechanism, but also encompasses all other function-
ality that directly or indirectly affects the correct operation
of the reference validation mechanism. Using the operat-
ing system as the example, the TCB of the system includes
the object management and access control functions. The
object management function is responsible for creating ob-
jects, processing requests and the access control contains
both the rules and the security attributes that support the
access control decision-making process. TCB partitions the
hardware and software into two parts: the part inside the
Trusted Computing Base is referred to as trusted (TCB) and
the part outside the Trusting Computing Base is referred to
as untrusted (N-TCB).

3.3 Information Flow Model
In an operating system, the operations between subjects

and objects can be classified as write like or read like [10]
and the operations between subjects can be expressed as
calls. If a subject s1 can write to an object o (write(s1, o)),
which can be read by another subject s2 (read(o, s2)), we
say there is a flow transition from subject s1 to subject s2
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(flowtrans(s1, s2)). The subject to subject calling relation-
ship is considered as a flow transition from subject s1 to s2

if s1 can call s2.

Definition 1. The Flow Transition flowtrans(si, sj) spec-
ifies that information flows from subject si to subject sj. We
say there is a flow transition from subject si to subject sj if:
(∃o ∈ O : write(si, o) ∧ read(sj , o)) ∨ call(s1, s2).

The flow transition describes the direct information flow
between subjects. Suppose there is a sequence of flow transi-
tions in which flowtrans(si−1, si) for subjects i = 1, . . . , n,
then without loss of generality there is an information flow
path from subject s0 to subject sn.

Definition 2. The Information Flow Path flowpath(s0,
sn), specifies sequence of flow transitions from subject si to
subject sj . Assume there is a flow transition flowtrans(si−1,
si) for i = 1, . . . , n then flowpath(s0, sn) is represented as:∧n

i=1
flowtrans(si−1, si).

Traditional models describing information flow related to
integrity and confidentiality include Lattice [9], Bella- La-
Padula [5], Biba [6] and Clark-Wilson [7]. The Biba and
Clark-Wilson are related to integrity, the Bella-LaPadula
model is concerned with confidentiality and Lattice is the
combination of the Biba and the Bella-LaPadula models.
The Biba integrity property is fulfilled if a high integrity pro-
cess cannot read lower-integrity data, execute lower-integrity
programs, or otherwise obtain lower-integrity data in any
other manner. Clark-Wilson provides a different view of
dependence, where low integrity data can flow to high in-
tegrity only through a particular information flow channel
referred to by Filter. Since in there is no Filter mechanism
in SELinux, we later adopt Biba or BLP models in checking
information flow paths and finding possible policy violations
against security goals.

4. FRAMEWORK OVERVIEW
In this section, we present our framework for enabling

policy visualization with emphasis on SELinux policies. Our
framework is divided in the following major modules:

• Policy Files: The policy files include the security pol-
icy, role permission mappings, TCB and N-TCB defi-
nitions and the roal related rules labeling. These pro-
vide information related to policy statements, map-
pings of the operations between the subjects and ob-
jects, the initial TCB/N-TCB classification, and types
targeted by the different security goals (G1 to G6).

• Policy Parser: This module involves the parsing of
policies and the mapping of policies into goals and
TCB definitions. This information is used to com-
pile the policy graph, which is discussed in the next
section.

• User Input: This module is composed of the overview
module which provides a general view of the policy
graph, the content view module which is used for view-
ing the policy statements, the detailed view module
which is used for exploring detailed portions of the pol-
icy graph, the policy analysis module provides the GUI
used for analyzing and finding the policy violations.

• Query: This module enables the user to specify, trans-
late and execute queries against the policy graph. The
query writer provides the graphical tools used by the

user to specify the query, this query is then translated
into path queries on the policy graph by the query
translator and finally the query executor applies path
finding algorithms on the policy graph to execute the
query.

• Policy Visualization: This module provides the vi-
sualization capabilities. It provides several graph visu-
alization layouts for the query computed policy graphs
such as the semantic substrates and the adjacency ma-
trix. It also enables the user to perform several oper-
ations on the visual layouts such as zoom, pan, anno-
tation, rearrangement and clock-wise.

5. POLICY VISUALIZATION
Information visualization leverages highly-developed hu-

man visual system to achieve rapid uptake of abstract in-
formation. In our framework we use information visualiza-
tion techniques to visualize the policy to enable the sys-
tem administrator to better understand the configured pol-
icy. In this section, first we define the policy graphs, then
we present our proposed semantic substrates and adjacency
matrix policy visualization techniques. A policy graph is
defined as:

Definition 3. Policy Graph is a directed categorized graph
G = (V, E), where the set of vertices V and the set of edges
E represent the types of entities and the flow transitions be-
tween them respectively.

• V = Vo ∪ Vs ∪ Vr ∪ Vu is the set of nodes representing
different entities. Vo, Vs, Vr, and Vu is the set of nodes
that represent objects, subjects, roles, and users respec-
tively. The objects are assigned types and the subjects
are assigned domains.

• E = Er∪Ew∪Ec is the set of edges describing informa-
tion flow between the different vertices. Given subject
vertices vsi

, vsk
∈ Vs and object vertex Vo ∈ Vo:

– (Vsi
, Vo) ∈ Ew if there is a write(si, o).

– (Vo, Vsk
) ∈ Er if there is a read(sk, o).

– (Vsi
, Vsk

) ∈ Ec if there is a call(si, sk).

5.1 Semantic Substrates
Several visualization studies concluded [12, 3] that hu-

mans perceive data coded in spatial dimensions far more
easily than those coded in non-spatial ones. Building on
these results, we propose the use of semantic substrates
based on node attributes to layout nodes in non-overlapping
screen regions. We also make use of non-spacial cues, such
as color or shape to emphasis certain nodes or group of
nodes. An SELinux policy graph consists of mainly four
node categories, namely User, Role, Domain and Type. Fur-
thermore, domains and types can be further classified, for
example administration domain and user program domain.
Based on this semantic classification of nodes, the policy
graph can be displayed spatially by distributing nodes into
non-overlapping regions. Figure 2, shows the semantic sub-
strate template used. The Y-axis is divided into regions,
where each region contains nodes representing a certain en-
tity. Furthermore, in each region nodes representing enti-
ties with different classification are placed in different dis-
tricts on the X-axis. Different colors and shapes are used to
help the identification of different nodes, for example, black
circles, red circles and black squares are used to represent
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USER

ROLE

DOMAIN

TYPE

trusted untrustedprotected

SD DAE PRO ULO

t2

t1

t3

d3

d1

t4 t5

user1

role1

ST DT FT PT DE NF NE

(a) Policy Display Template

USER

ROLE

DOMAIN

TYPE

trusted untrustedprotected

fixed_disk_device_t

devtty_t

etc_runtime_t

fsadm_t
user_t

mount_t
user_mozilla_t

user_games_t

sshd_t

sendmail_t

mail_spool_t

user_u system_u

system_ruser_r

ST DT FT PT DE NF NE

PRODAE ULOSD

(b) Example Node-Link Path

Figure 2: Semantic Substrate Template and Example

d7d6d5d4d3d2d1t5t4t3t2t1

t1

t2

t3

t4

t5

d1

d2

d3

d4

d5

d6

d7

1

23

4

Trusted

Untrusted

Goal protected 
types reachable
by domains

Type-Type or
Domain-Domain

Domain-Type or 
Type-Domain

(a) Policy Display Template

t1: fixed_disk_device_t

t2: devtty_t

t3: etc_runtime_t

t4: mail_spool_t

t5: ssh_devpts_t

d1: user_t

d2: user_mozilla_t

d3: user_games_t

d4: sendmail_t

d5: sysadm_t

d6: mount_t

d7: fsadm_t

d7d6d5d4d3d2d1t5t4t3t2t1

(b) Example Adj-Matrix Path

Figure 3: Adjacency Matrix Template and Example

trusted domains, untrusted domains and protected types re-
spectively. Based on the policy graph definition, we distin-
guish the transitions between different nodes by assigning
different colors to the different transition classes. For exam-
ple, the user to role assignment is represented by a red arc,
and similarly the role to domain, domain to type and type
to domain are assigned different colors. One advantage of
semantic substrates is that the administrator can easily vi-
sualize links that cross from one category (region) to another
region [3].

5.2 Adjacency Matrix
The semantic substrates is a very good choice for path

finding given that the links are not heavily crossed or tan-
gled. For visualizing a path in a dense policy graph we
propose to use an adjacency matrix approach which is more
compact and is free of visual clutter [32, 20]. We further
enhance the path visualization capabilities of the adjacency
matrices approach by adding direction characteristics. We
also develop a direction based approach that enables the
administrator to intuitively trace the visualized paths.

Figure 3(a) shows the our proposed adjacency matrix vi-
sualization template. The nodes are arranged on both the X-
axis and the Y-axis. To visualize a path P = {v0, v1, . . . , vn}
in the adjacency matrix, we highlight entries (vi, vi) and
(vi, vi+1), for i = 0, . . . , n − 1. We draw an arc from entries
(vi, vi) and (vi, vi+1) for i = 0, . . . , n−1, and we draw an arc
from entries (vi−1, vi) and (vi, vi+1) for i = 1, . . . , n−1. Fig-
ure 3(b) shows the visualization of path P = {d2, t2, d4, t1}.

The series of arcs carry all information of the original path.
In our template the types and domains are arranged on both
the X-axis and the Y-axis. Furthermore, the grid is divided
into four quadrants:

• Quadrant 1: This is the write quadrant, a slot (di, tj)
signifies that domain di can write to type tj .

• Quadrant 2: Slot (di, dj) signifies that domain di can
call domain dj .

• Quadrant 3: This is the read quadrant. A slot (ti, dj)
signifies that type ti can read by domain dj .

• Quadrant 4: Slot (ti, ti) is used to enable transition.

For example, a path P = {d2, t2, d4, t1} represents informa-
tion flow write(d2, t2), read(d4, t2) and write(d4, t1). In our
proposed adjacency matrix template this requires the path
to visit the write quadrant then the read quadrant. There-
fore, information flow paths will always follow a clock-wise
direction. Using this property, an administrator can easily
find the directed path information by scanning the adja-
cency matrix template. Furthermore, we use different colors
to represent trusted, non-trusted and goal protected entities
in the adjacency matrix.

6. SECURITY POLICY QUERYING
Users have difficulty writing or formulating a query [34].

The idea of the visual query formulation is to help system
administrators to specify precise queries on the policy base
using an interactive visual querying technique. Using an ap-
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DOMAIN

TYPE

SD

ST

PRO ULODAE

fixed_disk_device_t

mount_t

DT FT PT DE NF NE

DOMAIN

TYPE

SD

ST

PRO ULODAE

devtty_t

user_tmount_t

DT FT PT DE NF NE

user_mozilla_t

user_games_tsendmail_t

sysadm_t

(a) Node to Node Information Flow (b) Group to Groups Information Flow

DOMAIN

TYPE

SD

ST

PRODAE

fixed_disk_device_t

mount_t

DT FT PT DE NF

ULO

NE

user_games_t

(d) Node to Node Flow Through Another Node 

DOMAIN

TYPE

SD

ST

PRODAE

devtty_t

mount_t

DT FT PT DE NF

user_mozilla_t

user_games_tsendmail_t
sysadm_t

(e) Reachability

NE

ULO

fixed_disk_device_t

user_t

fsadm_t

DOMAIN SD

ST

PRODAE

sendmail_t

DT FT PT DE NF

(f) Separation of Duty

TYPE

ULO

NE

sendmail_exec_t

rootkit_t

DOMAIN

TYPE

SD

ST

PRODAE

devtty_t

mount_t

DT FT PT DE NF

user_mozilla_t

user_games_tsendmail_t

(c) Node (Group) to Group (Node) Information Flow

user_t

NE

ULO

devtty_t

Figure 4: Example Query Results

proach similar to the Query-by-Example (QBE) for querying
relational data [26, 27], in having a graphical user inter-
face that allows users to write queries by creating example
tables. Our approach provides a user interface and a pol-
icy graph that enables the administrator to create and run
queries against the policy base. The queries are generated
by connecting our proposed query operators to formulate the
intended information flows. The query classification and op-
erators were designed to provide functionalities adopted by
the previous policy analysis mechanisms [35, 31]. In general,
there are two classes of queries:

Q1. Identify policy integrity violations based on informa-
tion flow against security goals.

Q2. Identify other policy violations like separation of duty
and incompleteness.

6.1 Query Classification
Integrity checking is based on performing reachability anal-

ysis on the policy graph. For example, PAL [31] focused on
finding information flow paths from N-TCB to TCB. In ad-
dition to the TCB and N-TCB classification, our framework
provides a goal related policy classification, which enables
querying for information flow paths affecting resources pro-
tected by certain goals. In what follows we provide set of
basic query classes that are supported by our framework to
enable the administrator to query the policy base. A node
represents a user, role, type or domain, and a group repre-
sents set of nodes, available groups are TCB, N-TCB, goal
related nodes, and user defined groups.

C1. Node to Node information flow paths. This enables the
querying for information flow from a specific domain
to a specific type. The example in Figure 4(a) shows
the query result in the form of the information flow
path from domain mount t to type fixed disk device t.

C2. Group to Groups information flow paths. This enables
the querying for information flow from N-TCB to TCB,
or from a N-TCB to a set of goal related domains or
types. The example in Figure 4(b) shows the paths
query result from N-TCB to TCB.

C3. Node (Group) to Group (Node) information flow paths.

This enables the querying for information flow from
one domain to the goal protected types, or from the N-
TCB to a certain domain. The example in Figure 4(c)
shows the result of finding information flow paths from
all N-TCB to the mount t domain.

C4. Node to Node information flow paths through another
Node. Finds information flow from one type to another
type through a certain type, where types can be do-
mains or types. The example in Figure 4(d) shows the
result of finding information flow path from domain
user games t to type fixed disk device t through type
devtty t.

C5. Reachability. Finds all possible information flows from
or to a certain type. For example, find all information
flows to fixed disk device t, or the information flows
from user t. The example in Figure 4(e) shows the
result of finding the information flow paths flowing to
fixed disk device t.

C6. Separation of Duty (SoD). Checks constraints on au-
thorizations to types. For example in the context of
SELinux, the separation of duty can be interpreted as
separation of the domains allowed to modify(e.g., write
or create) executable files from the domains allowed to
execute those executables. In PAL [31], these queries
are restricted to the direct access. We consider direct
and indirect by examining the information flow path.
In the SELinux example policies, to test this query we
introduce policies that enable the rootkit t domain to
have write access on sendmail exec t type and transi-
tion operation on sendmail t. By querying the policy
graph we are able to locate this SoD violation as de-
picted in Figure 4(f).

6.2 Basic Query Formulation
Our framework provides an interactive drag and drop query

platform that enables the administrators to issue informa-
tion flow queries by simply connecting the provided com-
ponents compared to the current policy the current policy
analysis frameworks [35, 31] which are based on scripting.
Figure 5 summarizes the basic visual components.

• Element Nodes (E-Nodes) are shaped as labeled circles;
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their label represents the attributes of the element.
e.g. using SELinux policy as the example, the element
nodes include USER, ROLE, DOMAIN, TYPE, TCB,
NON-TCB and Goal. The character # is used to help
the attribute specification. For example, Goal# can
be customized to be Goal1, Goal 2 etc.

• Operator Edge (O-Edge) is represented as the curve
that connect the element nodes to another element
nodes. The label of the operator edges represents the
query classification of the query. Based on the query
classification, the operator edges include write, read,
call, have, indirect have, indirect flow to, SOD and
indirect SOD.

• Element Nodes Annotation (EN-Annotation) is to spec-
ify the element nodes value. It can be a single value or
a set. When the policy administrator draws the query,
this value can be partially specified as the wildcards
“?” and “*” denote any character and any sequence of
characters respectively.

• Operator Edges Annotation (OE-Annotation) is to spec-
ify required path properties. For example, to query
the information flow path from one node to the other
node, we can specify to find shortest path, all the path,
any path or the paths that can be found in the time
limitation. The value “*” denotes all paths.

Figure 5(e) shows example composed queries that specify
how to query policy graph nodes relationship like have, in-
formation flow path.

NTCB TCBUser Type
Goal

#
RoleLabel

(a) Element Nodes (a’) Element Nodes Examples

(b) Element Annotation

text

text

(d) Operator Annotation

(c’) Element Annotation Examples
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Figure 5: Query Construction

6.2.1 Join Query Construction
In this section we describe the join query modes which

are constructed based on the shared E-Nodes. The Policy
administrator can use query joins to construct more complex
queries such as finding the domain that can both write and
read the goal protected objects. Also, using join query the
policy administrator can accumulate several query results on
a single graph. We summarize three main joins for the join
query: Simple Join, Merge Join and Tuple-sharing Join.

• Simple Join specifies that a set of E-Nodes are con-
nected in sequence through the O-Edges; Given E-
Nodes ni, nj , nk and O-Edges oi,oj , if oi(ni, nj) and
oj(nj , nk), then we say there is a simple join. An ex-
ample join query is shown in Figures 5(f).

• Tuple-sharing Joinspecifies that two or more E-Nodes
are connected out from the same E-Node through the
O-Edges; Given E-Nodes ni, nj , nk and O-Edges oi,oj ,
if oi(ni, nk) and oj(ni, nj), then we say there is a tuple-
sharing join.

• Merge Join specifies that two or more E-Nodes are
sort-merge into one E-Node through the O-Edges; Given
E-Nodes ni, nj , nk and O-Edges oi,oj , if oi(ni, nj) and
oj(nj , nk), then we say there is a merge join.

6.3 Query Execution
Based on the definitions of the join query construction,

the identification of the different join format can facilitate
the query execution. The paths computed during the query
executions are based on the OE-Annotations associated with
operator edges which include the shortest path, any path or
the paths found given a execution time limit. The query ex-
ecution makes use of the shared nodes between group nodes.
For example, in the tuple-sharing join (shown in Figure 5),
suppose A is NTCB, B is TCB, C is fsadm t and the O-
Edges having same annotation, since fsadm t belongs to
TCB, the query only needs to be executed from A to B.
Similarly, in the merge join, if D is NTCB and E is a subset
of NTCB (e.g.xdm t) or shares labels with the NTCB, the
query will evaluate paths from D to F then the paths from
E - (E ∩ D) to F.

Algorithm [Execute Policy Query]

Input:   The Policy Query graph Gq

Output:  The Policy graph G with query result

Method:

(1) Nlist = getElementNodes(Gq) /* get all the nodes in query graph

(2) FOR each na ∈ Nlist DO

(3)  Elist= getConnectEdges(na, Gq) /* get all the edges of node na

(4)  FOR each e ∈ Elist DO

(5)             nb=findConnectNode(e, na, Gq)  /* get the connected node of na

(6) If nb. getMergeNodes(nb) !=NULL Then

(7)                   na = na - nb. getMergeNodes(nb, e) /* na  remove the duplication 

caused by merge join

(8) If na. getTupleNode(na) !=NULL Then

(9)                   nb = nb - na. getTupleNode(na, e) /* nb remove the duplication caused 

by tuple-sharing join

(10)            If na !=NULL && nb !=NULL Then

(11)                  queryExecution(na, e, nb, Gq ) /* execute the query

(12)            na.addTupleNode (nb , e) /* save the data of nb to na for the tuple-sharing

(13)            nb.addMergeNode (na, e) /* save the data of na to nb for the merge join

Figure 6: Query Execution Algorithm

Referring to the algorithm in Figure 6, the policy query ex-
ecution algorithm is mainly composed of two main parts. In
the first part, the algorithm identifies all the E-Nodes from
the query graph using the function getElementNodes(Gq),
then for each E-Node na, it finds all the outgoing O-Edges
connected to node na using getConnectEdges(na, Gq). In
the second part, for each of the identified edges e in the
previous step, the algorithm identifies the nodes connected
to it identified by nb which is retrieved by the function
findConnectNode(e, na, Gq). The two cases of merge query
and tuple sharing are checked and the duplication is re-
moved. If na and nb are part of the merge query, the du-
plicated nodes are removed from na by using the expression
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Figure 7: Policy Visualization

na − nb.getMergeNodes(nb, e), the merge join nodes infor-
mation are stored in the nb attribute and can be retrieved
using nb.getMergeNodes(nb, e). On the other hand, if na

and nb are part of tuple-sharing, the duplication of nb us-
ing nb − na.getTupleNode(na, e), where the tuple-sharing
nodes information is maintained in the na attribute and can
be retrieved using na.getTupleNode(na, e). After the in-
formation duplication is removed, the query from na to nb

with operator e is executed. Finally, the executed queries are
added to result graph by adding the nodes and edge informa-
tion into na and nb respectively using na.addTupleNode(nb)
and nb.addMergeNode(na).

7. SELINUX CASE STUDY
In this section we discuss the implementation details of our

proposed framework, we give design snapshots of our policy
visualization analysis tool (PVA) and we discuss how the
tool is used to identify policy violations in SELinux policies.

7.1 Policy Visualization Analysis Tool (PVA)
The PVA tool is presented to the user via a self explana-

tory graphical user interface. To enhance the cognition and
understanding of the policy information, we provide imple-
mentations of both the semantic substrates based and ad-
jacency matrix-based visualization layouts. Another impor-
tant aspect of our design is to be expressive and directly
mapped to the real system policy analysis. By providing a
visualization based policy query platform our design enables
the administrator to build a query by example.

Our implementation is based on the Java JDK1.6 and sup-
porting libraries. The graph drawing modules were based
on our extensions to the open source graphing package Pic-
collo [4]. Our parsing tool is based on the policy struc-
ture adopted by the APOL [35] tool. In this case study the
SELinux policy binary file policy.19 was used. Figure 7(a)
shows a snapshot of the our tool. The policy administrator
can import, analyze, query and modify the policy through
the menu. The left window is composed of two parts: se-
mantic substrates-based visualization and adjacency matrix-
based visualization, and each window includes the tabs for
view, analysis, and violation. The view tab provides the GUI
for the policy graph overview, content view and detail view
e.g. viewing the whole policy graph through zoom in, zoom
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Table 1: Policy Violation Examples
Example Policy Violations

Subjects Type:Class Subject Resolution
200 network fsadm t Filter

rhgb t mnt t:dir fsadm t Modify
smpmount t mnt t:dir fsadm t Modify
hotplug t etc runtime t:file fsadm t Ignore

33 unpriv userdomain:fd use fsadm t Modify
134 initrc t:fifo file fsadm t Modify
16 removable device t:chr file fsadm t Modify
3 scsi generic device t:chr file fsadm t Modify

200 devlog t:sock file fsadm t Ignore

out etc. The analysis tab supports the analysis of the policy
by enabling the administrator to select the security goals of
interest and ultimately locate the policy violation with the
help of the query function. The violation tab displays all
the policy statements that are involved in a security vio-
lations. Furthermore, in this tab the policy administrator
can directly modify the policy in using the text editor or by
directly editing the policy graph. In the main window the
policy graph, query results, goal related policy graphs and
the policy violation graph can displayed.

7.2 Policy Graph
The main window in Figure 7(a) shows the visualized

SELinux policy based on semantic substrate design proposed
in Section 5. The policy is composed of 308 domains, 1092
types and 31604 links. The Y-axis is divided into four re-
gions including USERS, ROLES, DOMAINS and TYPES.
The X-axis is labeled using the domain and type classifica-
tions discussed in Section 5. The domain regions are divided
into four different areas SD (System Domain), DAE (Dae-
mons Domain), PRO (Program Domain) and ULO (User
Login Domain). The type regions are divided into seven
different areas ST (security types), DT (devpts types), FT
(file types), PT (procfs types), DE (devpts types), NF (nfs
types), NE (network types). To help the policy adminis-
trator to easily identify the different regions, the elements
in non-neighboring regions are represented different shapes,
for example users and domains are expressed with circle,
and roles and types are expressed with rectangle. The edges
between different regions are represented by different col-
ored lines, for example the write operation between a do-
main and type are represented by red edges and the read
operations by green edges. Also, policy administrator can
view node attributes by clicking on the specific nodes. Fig-
ure 7(b), shows the adjacency matrix-based policy visual-
ization method, which was compiled by selecting a subset of
the nodes in the semantic substrates overlay.

7.3 Policy Query and Violation Detection
Figure 7(c) shows the graphical query interface and a

query designed to discover the paths N-TCB to resources
related to goal G1 (limiting raw access to data) such as
fixed_disk_device_t through specific type devtty_t and
TCB resources. Starting from left to right (Figure 7(c)), the
first node selects the N-TCB resources and finds the paths
to type devtty_t, then finds the paths from devtty_t to
the TCB resources. Finally, the query builds the paths from
the TCB resources to the goal G1 fixed_disk_device_t

device. Figure 7(d) shows the identified policy violations
by this query. Note, that the display divides the TCB and
N-TCB to provide a better understanding to the system ad-
ministrator. Running the visualization tool on 1.4GHz Intel

Pentium CPU with 512Mbytes of memory, the query loading
and parsing takes 15s, and the query execution and display
21s. Another example query that investigates information
flow paths from N-TCB to fsadm_t (TCB) without the con-
straint of passing through a specific intermediate node ex-
ecutes and displays in 88s. Table 1 shows identified policy
violations caused by information flow from NON-TCB to
TCB fsadm_t. The query execution and display is depen-
dent on the query type and the results size.

8. CONCLUSION
In this paper, we have proposed a visualization-based pol-

icy analysis framework to analyze the security policies. We
have provided both semantic substrates and adjacency ma-
trix approaches for policy visualization. We presented our
visualization-based query mechanism that enables the ad-
ministrator to query the policy base by simply connecting
query components similar to the query by example approach.
Our main methodology is to use visualization-based queries
to identify the possible policy violations. We have developed
a Policy Visualization Analysis (PVA) tool to implement our
framework. Additionally, we discussed how to use our frame-
work to analyze SELinux policies and the results confirmed
the feasibility and applicability of our methodology. We be-
lieve that this is the first attempt to formulate a general
visualization-based policy analysis framework and the first
attempt to use the visualization-based query to analyze the
policies.

Our current future work includes developing usability stud-
ies to evaluate the usability of our policy visualization frame-
work. For example, from using our tool we noticed that
building SoD queries is not intuitive as it requires the user to
clearly understand to constraints behind the SoD rules. Fur-
thermore, we plan on investigating node and link reordering
mechanisms that minimize the link crossings and entangle-
ment to provide more appealing policy visualizations. Other
possible areas of future work include applying more visu-
alization mechanism into our work to improve the effect of
the visualization and optimize the algorithm of policy query.
Also, the application of our framework for visualizing and
analyzing the XACML policy will be investigated in the near
future.
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