
SEGrapher: Visualization-based SELinux Policy
Analysis

Said Marouf
Department of Software & Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA
smarouf@uncc.edu

Mohamed Shehab
Department of Software & Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA
mshehab@uncc.edu

Abstract—Performing SELinux policy analyses can be difficult
due to the complexity of the policy language and the sheer number
of policy rules and attributes involved. For example, the default
policy on most SELinux-enabled systems has over 1, 500, 000
flat rules, involving over 1, 780 types. Simple analyses between
types can result in a large amount of data, which is poorly
presented to administrators in existing analysis tools. We propose
and implement a policy analysis tool “SEGrapher” that addresses
the above challenges. SEGrapher visually presents analysis results
as a simplified directed graph, where nodes are types, and edges are
corresponding policy rules between types. Graphs are generated
via a proposed clustering algorithm that clusters types based on
their accesses. Clusters provide an abstraction layer that removes
undesired data, and focuses on analysis attributes specified by the
administrator.

I. INTRODUCTION

One of the significant advancements in the security of the
Linux operating system, came with the introduction of Security-
Enhanced Linux (SELinux) [1], developed by the U.S. National
Security Agency. SELinux is a kernel Linux Security Module
(LSM) that adds Mandatory Access Control (MAC) to a regular
Linux system through a Type-Enforcement model, in which
domains (subject-types) are used to label processes, and types
(object-types) are used to label files. Most Linux distributions
nowadays, come with support for SELinux, and by default use
the SELinux “targeted” policy, which has over 1, 500, 000 flat
rules and over 1, 780 policy types. With such a large number
of rules and types, and the complexity of the policy language,
managing and analyzing SELinux policies becomes a daunting
task for average administrators (admins) [2], [3], [4]. Existing
policy analysis tools [5], [6], [7], assume that admins are highly
knowledgable in all aspects of SELinux policies, and are able to
easily understand and interpret policy rules. Furthermore, most
existing tools output a list of text-based analysis results, that do
not provide a clear overview of any inherent relations between
types involved in these results. For example, it is difficult to
understand relations that are based on multiple policy rules. It
is also difficult to discover unnecessary policy rules that might
be redundant, or rules that could further be optimized.
Information visualization is a means for enabling users to easily
analyze, reason, and explain abstract information using their
visual cognition [8]. Information visualization has been adopted

in security domains, to better understand and represent collected
data related to intrusion detection [9], firewall policies [10], and
network attacks [11]. In the case of policy admins, visualizing
analysis results can assist them in easily understanding the
direct and inherent relations between involved types, and to
easily discover new interesting relations that can lead to simpler
policy configurations.
Other challenges that can face admins involve the analysis of
new policy rules. We believe providing visual cues to admins
can simplify the analysis process.In this paper, we propose
and implement a visualization-based policy analysis tool, that
simplifies policy analyses. The main contributions of this paper
are:

• A clustering algorithm that clusters policy types based on
their allowed accesses, and builds a focus-graph based on
identified clusters. Clusters provide an abstraction layer
that easily allows admins to discover interesting and
inherent relations between types.

• A visualization-based policy analysis tool “SEGrapher”,
which implements our proposed clustering algorithm.
SEGrapher provides a simple, yet powerful interface, that
easily allows for analyzing multiple types at once, rather
than the usual one-to-one analysis.

II. PRELIMINARIES

A. SELinux Policies

SELinux policies are considered quite difficult to manage due
to the granular level of controls they provide [2], [3], [4]. Even
though this is true, an SELinux policy at its core is no different
than other access control policies in which a set of rules are
introduced to enforce and achieve an overall security goal. A
typical access control policy rule is built around a subject which
is granted certain actions on a certain object. For example, John
(subject) is allowed to play (action) all mp3 files (object) on
a system. The same model is applied in SELinux policy rules
but with more elaborate and fine-grained levels of control.
SELinux labels each resource, such as files and processes
within an SELinux-enabled system with a security context. A
security context is a label that usually incorporates three fields:
1) SELinux User, 2) Role, 3) Type, and sometimes includes



a level field for applying Multilevel Security (MLS). In this
paper we focus on the “Type”, which represents the core of
access control rules that determine what subject-types have
what accesses on which object-types. Object-types are defined
to group file objects, whereas subject-types are defined for
processes. Types defined for processes are usually referred to
as domains. Objects that fall under the same object-type, are
similar in which subjects access them. Subjects or processes
that are under the same subject-type, are similar in which
objects or files they access. An example of an object-type is the
user_home_t type, which is used to group files owned by
a user and reside in his/her home directory. Grouping here, is
achieved by setting the type within each file’s security context
to user_home_t. An example subject-type is the httpd_t
type, which belongs to the Apache HTTP server process.

In this paper, we focus on the Access Vector (AV) rules
within an SELinux policy. There are three main types of AV
rules, allow, auditallow, and dontaudit. Our work involves the
allow type, which is responsible for allowing accesses between
types, whereas the latter two are for auditing purposes. A
typical AV allow rule specifies how a subject-type is allowed
to interact with an object-type. The building blocks of any AV
allow rule are the following:

- Subject-type: The subject of the access control rule which
is granted certain accesses.

- Object-type: The object or resource to be accessible by
the subject of this rule.

- Object-class: Each object within SELinux falls under
a certain class (object-class). Each object-class has a
corresponding set of applicable actions (permissions). For
example, file and dir are object-classes that respectively
correspond to files and directories within a system. Having
object-classes allows for easier management of permis-
sions on objects. For example, a read permission has a
different interpretation when applied to files vs. directo-
ries, hence having an associated permission set for each
object-class allows for easier interpretation of the intended
permission, i.e. read on object-class file is not the same
as read on object-class dir.

- Permissions: For each object-class there is an associated
set of permissions, i.e. a set of actions that the subject
can take on the object. For example, the file class has the
permissions read, write, create, rename an so forth.

Following is an example AV allow rule written in the SELinux
AV rule syntax:
allow httpd_t httpd_log_files_t:file {read}

this reads as: allow the subject-type httpd_t to read files
of object-type httpd_log_files_t. Or in a more readable
format this reads: Allow the Apache HTTP process to read its
log files.

Most Linux distributions come with support for SELinux.
The standard SELinux policy provided is called the “Refer-
ence Policy” which is currently developed and maintained by
Tresys [15]. The reference policy acts as a mutual ground for
policy developers and can be tweaked according to the specific

security requirements of a system. Two popular variations of
the reference policy are the targeted policy and the strict policy.
The targeted policy allows for controlling specific services such
as WEB or FTP servers, whereas the strict policy takes full
control of a system. In summary, the targeted policy allows for a
more permissive system that can be incrementally locked down
by admins, whereas the strict policy starts with a nearly locked
system that needs to be incrementally opened up appropriately.
Our interest in these policy variations comes from the fact that
both have quite a different set of defined types, and AV rules.
We found the targeted policy to have 1,785 types and 1,517,130
allow rules, vs. 2,321 types and 1,766,729 allow rules for the
strict policy. Such large policies emphasize the need for better
analysis tools.

III. SELINUX POLICY ANALYSIS

Let T be the set off all types within a SELinux policy P , O
the set of all object-classes, and A the set of all permissions.
We propose a policy analysis tool “SEGrapher” which allows
for visualizing policy analysis results, by modeling a policy as
a directed graph. Given a policy P , SEGrapher builds a directed
graph Gp, where a node in Gp maps to a specific SELinux type,
and an edge (out-edge) maps to the set of all AV allow rules Rij

connecting a type ti (subject-type) to a type tj (object-type).
Figure 1 illustrates a simple graph of three types, t1 (subject-
type), t2 (object-type), and t3 (object-type). The figure shows
the corresponding AV rules R12 for t1 and t2 with two allow
rules, and R13 for t1 and t3 with one allow rule.

t
1

t
2

allow t
1
 t
2
 : file { write}

allow t
1
 t
2
 : dir { read write}

R
12

t
3

allow t
1
 t
3
 : tcp_socket { listen }

R
13

Fig. 1. AV allow rules for subject-type t1 and object-types t2 and t3,
represented as edges in Gp

SEGrapher uses Gp to generate a directed focus-graph Gf

representing desired analysis results, that is, Gf will indicate
the accesses and relations amongst SELinux types analyzed
by admins. Gf is driven by a set of inputs that are checked
against AV rules (edges) in Gp. These inputs are controlled
and provided by admins and include the following:

1) Focus Types Tf : A set of types Tf ⊆ T which is the
focus of the policy analysis and the basis of extracting
the focus-graph Gf from Gp. An out-edge in Gp is added
to Gf if the source-node (subject-type) of this out-edge
exists in Tf .

2) Focus Object-Class of : An object-class of ∈ O, which
is used to filter the out-edges that already satisfy the
focus-types Tf .



3) Focus Permissions Af : A set of permissions Af ⊆ A,
which are used to further filter the out-edges that already
satisfy both Tf and the focus object-class of .

With the provided Tf , of , and Af , an out-edge in Gp with an
AV allow rule set Rfn is added to Gf if for any ri ∈ Rfn, all
of the following conditions are satisfied:

1) The subject-type for ri exists in Tf .
2) The object-class for ri = of

3) Af exists within the permissions for ri.

For example, let Tf = {t1}, of = dir, and Af = {write}.
When applying these inputs onto the graph in Figure 1, a
new focus-graph Gf is generated as illustrated in Figure 2.
Note that, only out-edges with AV rule sets fulfilling the above
conditions make it to Gf .

t
1

t
2

allow t1 t2 : file { write}

allow t
1
 t2 : dir { read write}

R
12

Fig. 2. Filtered AV allow rules for subject-type t1 and object-type t2 become
an edge in Gf

With 1,517,130 AV allow rules, 1,785 types, 47 object-
classes, and 167 different permissions, the full SELinux
reference policy graph is infeasible to analyze at once. Even
when applying the analysis inputs Tf , of , and Af , a resulting
focus-graph Gf can be difficult to analyze. In many cases,
simply analyzing a single focus-type can result in a large
number of AV allow rules, hence a dense focus-graph Gf . For
example, to analyze the read accesses of the Samba Server
[17] on directories within an SELinux-enabled Linux system,
let Tf = {smbd t}, of = {dir}, and Af = {read} where
smbd_t is the subject-type (domain) corresponding to the
Samba Server. This analysis results in 1,048 AV allow rules,
hence a dense Gf of 1,048 edges and 1,049 nodes. If we add
a second type ftpd_t (FTP Server) to Tf , and run a new
analysis, we’ll find that the number of edges in Gf almost
doubles to 2,095, leading to a very dense graph, whereas the
number of nodes increases just to 1,052. This is due to the
fact that both smbd_t and ftpd_t have a large overlap in
the object-types they access, i.e. their out-edges share a large
set of end nodes within Gf .

Observation 1. Many subject-types in SELinux have a large
overlap of object-types that they access. In some cases they
access the exact set of object-types, and in other cases there is
a hierarchical relation between the sets accessed.

Based on Observation 1, we define the following terms and
relations between types ti and tj in Tf :

Definition 1. (Object-Type Set) The object-type set Toi ⊆ T
for type ti is the set of object-types in all AV allow rules, where

an AV rule’s subject-type is ti. That is, the set of all types that
ti can access.

Definition 2. (Matching Types) Types ti and tj are matching if
their respective object-type sets Toi and Toj are equal. Formally,

ti<mtj ⇐⇒ (Toi = Toj )

Definition 3. (Hierarchical, Parent-Child Types) A parent-child
relation between types ti (parent) and tj (child) exists when
ti’s object-type set Toi is a proper superset of tj’s object-type
set Toj . Formally,

ti<htj ⇐⇒ (Toi ⊃ Toj )

Definition 4. (Overlapping Types) Types ti and tj are overlap-
ping if their respective object-type sets Toi and Toj overlap and
neither ti<mtj nor ti<htj holds . Formally,

ti<otj ⇐⇒ (Toi ∩ Toj 6= φ) ∧ ti<mtj ∧ ti<htj

Definition 5. (Disjoint Types) Types ti and tj are disjoint
if their respective object-type sets Toi and Toj are disjoint.
Formally,

ti<dtj ⇐⇒ (Toi ∩ Toj = φ)

These relations can assist in discovering other interesting
relations between types ti and tj in Tf , and help answer a
number of analysis questions such as, but not limited to:

- Are ti and tj redundant? (Possible when ti<mtj).
- What accesses does ti have, but tj doesn’t? (Possible when
ti<htj , or ti<otj).

- Can we simplify a policy by removing overlapping (re-
dundant) AV rules within P ? (Possible when ti<otj).

Note that our focus is not on one-to-one type relations, i.e. can
ti ∈ Tf access tj ∈ Tf , but on more interesting relations that
exist between ti and tj which can eventually lead to simpler
policy configurations and an easier analysis process. One-to-
one relations between ti and tj can still easily be identified
from the relations above. In SEGrapher we uniquely visualize
the focus-types Tf , which makes it easy to identify them and to
identify any one-to-one relations that may exist between them.
Based on the defined relations <m, <h, <o, and <d, and
our higher goal of discovering new relations, we propose a
clustering algorithm in section III-A that utilizes and exposes
existing relations between focus types in Tf . By exposing these
relations and building a cluster-based focus-graph reflecting
these relations, the algorithm is able to visually simplify focus-
graphs, hence simplify the policy analysis process.

A. Type Clustering

We propose and implement a clustering algorithm that uti-
lizes the relations <m, <h, <o, and <d identified above. Given
focus-types Tf , object-class of , permissions Af , and an edge-
reduction threshold τe, we extract existing relations from a
policy graph Gp and generate a set of clusters C where each
cluster Ci ∈ C becomes a node within a new cluster-based
focus-graph Gf .



Algorithm 1: Generate Clustered Policy Focus-Graph
input : Policy graph Gp, focus-types Tf , object-class

of , permissions Af , and threshold τe
output: Clustered Focus-Graph Gf

1 Initialization: C ← {} ; // Candidate Cluster
Nodes

2 foreach tf ∈ Tf do
3 create new cluster node Cc;
4 add edge e(tf , Cc) to Gf ;
5 foreach node tn ∈ OutNodes(tf , Gp) do
6 Rfn = AV allow rule for edge e(tf , tn) in Gp;
7 if Rfn satisfies of and Af then
8 add edge e(Cc, tn) to Gf ;

9 insert Cc into C;

10 while optimization possible do
11 for i← 0 to size(C) do
12 for j ← 0 to size(C) do
13 outnodesi = OutNodes(Ci, Gf);
14 outnodesj = OutNodes(Cj , Gf);
15 if outnodesi = outnodesj then
16 MergeMatching(Ci, Cj , Gf);

17 else if outnodesi ⊂ outnodesj then
18 MergeSuperset(Ci, Cj , τe, Gf);

19 else if outnodesj ⊂ outnodesi then
20 MergeSuperset(Cj , Ci, τe, Gf);

21 else if outnodesi ∩ outnodesj 6= φ then
22 MergeOverlap(Ci, Cj , τe, Gf);

The process of generating Gf is detailed in Algorithm 1.
The algorithm starts by initializing a set of cluster nodes from
the object-type sets of the focus-types Tf . Lines 3 and 4 create
a new cluster node Cc for each of the focus-types tf ∈ Tf ,
and a new edge between tf and Cc is added to Gf . On lines 6
and 7, the AV allow rule corresponding to each edge between
tf and its out-nodes in Gp is evaluated against the given of
and Af . If of is the same as the AV rule’s object-class, and
Af is within the AV rule’s permissions, then a new edge from
the new cluster Cc and the out-node is created in Gf . Each
new cluster is then stored into C, at line 9. Figure 3 shows
an example of the initialization process (assuming all AV rules
satisfy of and Af ).

Lines 11 to 22 of Algorithm 1, involve discovering potential
relations between pairs of focus-types, where each focus-type is
represented by its corresponding cluster from the initialization
phase, that is, each cluster represents a type’s object-type set.
At line 15 of Algorithm 1, it checks if the relation <m holds.
In this scenario, Algorithm 2 is used to merge the object-type
sets into one set. Figure 4 illustrates this process. Note that the
number of both clusters and edges decreases, hence simplifying

t
2

t
1

t
3

t
4

t
5

t
6

(a) Before Initialization

c
2

c
1

t
3

t
4

t
5

t
6

t
2

t
1

(b) After Initialization

Fig. 3. Initialization of new node clusters for focus-types t1 and t2. Note:
t3, t4, and t5 are object-types for t1. t4, t5, and t6 are for t2.

the resulting Gf .

c
2

c
3

c
1

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(a) Before Optimization

c
2

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(b) After Optimization

Fig. 4. Clusters with matching object-types

Algorithm 2: MergeMatching
input: Cluster Nodes C1 & C2. Focus-Graph Gf

1 foreach edge e(t, C1) ∈ Gf do
2 add edge e(t, C2) to Gf ;
3 remove edge e(t, C1) from Gf ;

4 remove C1 from C

At lines 17 and 19 of Algorithm 1, it checks if the relation <h

holds. In this scenario, Algorithm 3 is used to establish a parent-
child relationship within Gf . This is achieved by removing
the out-edges of a parent cluster that point to the object-type
set of the child cluster, then pointing the parent cluster to the
child cluster. Figure 5 illustrates this process. Note that the
edge-reduction threshold τe is passed to Algorithm 3, which
allows it to measure the feasibility of establishing the parent-
child relation. That is, before Algorithm 3 makes any changes
to Gf , it checks if the resulting reduction in edge numbers is
greater than τe. The edge reduction for an <h relation is equal
to (the number of out-edges of the child cluster – 1).

At line 21 of Algorithm 1, it checks if the relation <o holds.
In this case, Algorithm 4 is used to extract the overlapping
object-types, and creates a new cluster that points to the
overlap. Figure 6 illustrates this scenario. The edge-reduction
threshold τe is passed to Algorithm 4, which allows it to
measure the feasibility of establishing the <o relation. That
is, before Algorithm 4 makes any changes to Gf , it checks if
the resulting reduction in edge numbers is greater than τe. The
edge reduction for an <o relation is equal to (the number of
overlapping out-edges – 2). Also note that for this scenario, the



c
2

c
3

c
1

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(a) Before Optimization

c
2

c
3

c
1

t
4

t
5

t
6

t
7

t
1

t
2

t
3

(b) After Optimization

Fig. 5. Clusters with superset object-types (parent-child)

Algorithm 3: MergeSuperset
input: Cluster Nodes C1 & C2. Threshold τe, and

Focus-Graph Gf

1 if C1 and C2 satisfy τe then
2 To ← OutNodes (C1, Gf );
3 foreach node tn ∈ To do
4 remove edge e(C2, tn) from Gf ;

5 add edge e(C2, C1) to Gf ;

number of clusters increases by 1. In our implementation, we
find that the increase of clusters for a reasonable edge-reduction
τe, is effective from a visualization point of view.

c
2

t
6

t
7

t
2

c
1

t
4

t
5

t
1

t
8

t
9

(a) Before Optimization

c
2

t
6

t
7

t
2

c
1

t
4

t
5

t
1

t
8

t
9

c
n

(b) After Optimization

Fig. 6. Clusters with overlapping object-types

Algorithm 4: MergeOverlap
input: Candidate Clusters C1, C2, and threshold τe

1 if C1 and C2 satisfy τe then
2 create new cluster node Co;
3 To ← OutNodes (C1, Gf ) ∩ OutNodes

(C2, Gf );
4 foreach node tn ∈ To do
5 add edge e(Co, tn) to Gf ;
6 remove edge e(C1, tn) from Gf ;
7 remove edge e(C2, tn) from Gf ;

8 add edge e(C1, Co) to Gf ;
9 add edge e(C2, Co) to Gf ;

Algorithm 1 continues to run until no more feasible relations
are discoverable. The run time of the algorithm depends on the

size of Tf , the size of the object-type set Tof for each type
tf ∈ Tf , the size of Af , and the value of the edge-reduction
threshold τe.
The initialization part of the algorithm, lines 1 to 9, is O(n2)
where n is the number of types in the SELinux policy Gp.
Regarding the optimization part, lines 10 to 22, iterations are
O(n2) where n is the number of types in Gp.

The results from applying Algorithm 1 are effective in both
discovering interesting relations between focus-types, and in
simplifying the visualization of analysis results. Another benefit
is the ability to isolate unnecessary analysis data, such as types
that are not within the focus-type set. This is achieved by
allowing admins to optionally hide/reveal these types within
their corresponding cluster nodes. In Section IV, we detail the
results of applying the algorithm within SEGrapher.

IV. DESIGN AND IMPLEMENTATION

We implement our proposed clustering algorithm in a tool
we call “SEGrapher”. SEGrapher is based on the Java JDK
1.6, and uses the APIs provided by SETools [15] for parsing
SELinux policies. Its graph drawing is based on an extended
version of the open source visualization toolkit Prefuse [20].
For the purposes of this paper, we use the SELinux targeted
policy binary file policy.21.

A. Visualization and Interactivity

SEGrapher’s GUI as shown in Figure 7, contains two main
panels. First, the left panel which allows the admin to control
the analysis attributes, such as focus-types, object-classes, and
permissions. It also has the controls for starting the analysis,
and searching for types within resulting focus-graphs. Second,
a right panel which shows the resulting focus-graphs of the
analysis.

1) Focus-Graphs: The components of a focus-graph are
visually differentiated to provide for easier policy analysis.

- Focus-type Nodes: Focus-types are shown as green nodes
within the graph. SEGrapher also creates a new version
of a focus-type in cases where it also plays the role of
an object-type. The reasoning behind this is to provide a
simpler focus-graph with less cycles, in cases where focus-
types access other focus-types.

- Object-type Nodes: Object-types are shown as orange
nodes in the focus-graph. Object-type nodes are hidden
by default, as they are not the focus of the analysis. In
cases where an object-type is also one of the focus-types,
it is by default expanded and visible.

- Cluster Nodes: The proposed clustering approach in Sec-
tion III-A results in cluster nodes that become part of the
focus-graph. A cluster node is shown in black color, and
shows a label which indicates the number of object-type
nodes it points to. Admins can also expand/hide object-
type nodes for a cluster node, by double-clicking on the
cluster node. Figure 8 shows the cluster node C1_0 with
13 expanded object-type nodes.



!

Type Profiles 

Object-classes 

Permissions 

Start analysis. 

Search Focus-graph 

Policy analysis 
focus-graph 

Fig. 7. SEGrapher’s User Interface

!

Fig. 8. Cluster C1 0 with 13 object-type nodes expanded. Shows overlapping
relation (httpd config t <o httpd cache t)

An out-edge from a node ni to nj indicates that ni can access
the type nj (for the specified object-classes and permissions).
If nj is a cluster node, then ni can access all the object-type
nodes for the cluster node nj , and all object-type nodes for
clusters pointed to by nj . For example, in Figure 9, the type
httpd_t can access all object-type nodes for cluster C1 and
C0, whereas the type httpd_tmp_t can only access nodes of
C0. Note that edges between clusters are visually differentiated
as a dashed line.

B. Policy Analysis

To start a policy analysis, first, the admin loads a policy into
SEGrapher, which is then parsed into a graph and stored into
memory for future analysis. Second, the admin needs to select

!

Fig. 9. Hierarchical relation (httpd t <h httpd tmp t)

a set of focus-types to be analyzed, and can optionally select
which object-class, and permissions to be used for filtering
policy AV rules. The left panel of SEGrapher, as seen in Figure
7, shows some of the object-classes and permissions provided.

1) Focus-Types: SEGrapher allows admins to select a set
of focus-types from a set of profiles we define. These profiles
allow for a more intuitive method of selecting types according
to their functionality, rather than searching for a specific type
from within a large list of types (e.g. SELinux targeted-policy
has over 1,780 types). For example, an admin can easily find the
type httpd_t within the profile Apache which itself is within
the profile Servers. Other profile examples include Databases,
Mail, Intrusion Detection, etc. Figure 7 shows some of the
profiles SEGrapher provides.

Once the admin decides on the analysis attributes, she/he can
start the analysis. Following our proposed clustering algorithm



in Section III-A, SEGrapher produces a focus-graph reflecting
the analysis results.

Figure 9 shows a focus-graph for focus-types httpd_t
and httpd_tmp_t. This focus-graph illustrates a hierarchical
relation (httpd_t <h httpd_tmp_t), that is, httpd_t has
access to all object-types that {httpd_tmp_t has access to.
This is reflected through the cluster nodes C1 and C0, where
httpd_t points to C1 which in turn points to C0, whereas
httpd_tmp_t only points to C0.

Another example of a focus-graph is shown in Figure 8,
which shows an overlapping relation (httpd_config_t
<o httpd_cache_t). The overlapping accesses between
httpd_config_t and httpd_cache_t are clearly
captured within the cluster C1_0.

Discussion: SEGrapher does not directly use type attributes
(used to group similar types within SELinux policies), but
rather generates its own clusters. SEGrapher already has sup-
port for attributes, because attributes are handled identically
to types within AV rules. Hence, attributes are eventually
represented via our clusters. Attributes are also not as reliable,
because not all types are associated to an attribute, hence
clustering is required.

V. RELATED WORK

Well known SELinux policy analysis tools include APOL
[5], SLAT [6], PAL [7], and Gokyo [21]. Tresys Technology
developed the APOL tool, which is used to analyze SELinux
policies. It provides a wide range of features including domain
transition analysis, direct and transitive information flow
analysis, and type relationship analysis. APOL requires a
strong understanding of SELinux policies and the involved
attributes, and requires a fair set of skills to perform proper
policy analyses. Results in APOL are text-based, and in
many cases unmanageable due to large result sets. Our tool,
SEGrapher, provides easy mechanisms for analyzing policies,
and visualizes the result set in a simple manner.
SLAT (Security Enhanced Linux Analysis Tool), follows an
approach similar to our’s, in that it represents a policy as a
directed graph. SLAT represents nodes as security-contexts,
and edges as the permissions on certain object-classes. The
focus of SLAT is on information flow, which can be detected
by traversing the policy graph. SEGrapher extends on this, by
generating a cluster-based graph, representing analysis results,
and dramatically reducing the complexity of the graph. It then
is able to present simplified analysis results.
PAL (Policy Analysis using Logic-Programming), uses a
logic-programming approach for analyzing SELinux policies.
It follows the same model as SLAT, but provides a more
extensive query set to admins. Similar to SLAT, PAL does not
provide visualized analysis results, and is not able to discover
inherent relations between multiple types, but is rather limited
to answering direct queries.Both SLAT and PAL require a
strong understanding of SELinux to generate strong queries
that result in meaningful results.
Jaeger et al. [21], developed a tool called Gokyo, mainly used

for checking the integrity of a proposed trusted computing
base (TCB) for SELinux. Integrity checks ensure that no types
outside the TCB can write to types within the TCB, and
no types inside the TCB can read from those outside of it.
Gokyo uses a graphical access control model for representing
policies. Gokyo is limited to the proposed TCB, and does not
provide “on the fly” policy analysis, nor does it allow admins
to interact with the resulting analysis results.
Xu et al. [22], proposed a visualization-based policy analysis
framework for analyzing security policies using semantic
substrates and adjacency matrices. The framework allows
admins to run visualization-based queries on a policy base to
find possible policy violations. However, their framework is
limited to a small set of queries, and the visualization results
can be difficult to interpret and understand.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our visualization-based SELinux
policy analysis tool, SEGrapher. SEGrapher implements a
proposed clustering algorithm that generates cluster-based
focus-graphs. Focus-graphs represent policy analysis results,
and are dramatically simplified by the use of clusters.
Clusters represent sets of object-types that are accessed
by certain subject-types. Using SEGrapher, we are able to
discover new interesting relations between multiple types at
once, such as hierarchical, matching, and overlapping relations.

Future work will include further focus on information flow
aspects of a policy, additional methods of visualization, cus-
tomizable type profiles, and the ability to analyze rules on types
that do not exist within the SELinux policy.
Further more, we plan on introducing and implementing a
risk model which will be incorporated into SEGrapher. This
model will allow administrators to assess the risks tied to
new policy rules based on existing ones. We can achieve this
via a similarity-based approach that’s used to identify sets
of nearest-neighbors for subject-types within newly introduced
policy rules, i.e. types that are most similar to the types within
the new rules. Similarities can be measured by investigating
the object-types, object-classes, and permissions accessed by
various subject-types. The nearest-neighbor rules are then used
to assist admins in identifying potential risks attached to the
new rules. To continue with our visualization-based approach,
we will introduce visual cues that assist admins in easily
assessing the risks of new rules.

ACKNOWLEDGEMENTS

This work was funded by the National Science Founda-
tion (NSF-CNS-0831360, NSF-CNS-1117411) and Google Re-
search Award.

REFERENCES

[1] Security Enhanced Linux, “http://www.nsa.gov/research/selinux.”
[2] Vincent Danen, “Introduction to SELinux: Don’t let complexity

scare you off,” http://www.techrepublic.com/blog/opensource/
introduction-to-selinux-dont-let-complexity-scare-you-off/2447.



[3] LWN.net, “Quotes of the week,” http:// lwn.net/Articles/179829/ .
[4] Kernel Trap, “SELinux vs. OpenBSD’s Default Security,” http://

kerneltrap.org/OpenBSD/SELinux vs OpenBSDs Default Security.
[5] Tresys Technology, “APOL,” http://oss.tresys.com/projects/ setools.
[6] MITRE , “SELinux Analysis Tools (SLAT),” http://www.mitre.org/ tech/

selinux/ .
[7] B. Sarna-Starosta and S. D. Stoller, “Policy analysis for security-enhanced

linux,” in In Proceedings of the 2004 Workshop on Issues in the Theory
of Security (WITS, 2004, pp. 1–12.

[8] I. Herman, I. C. Society, G. Melancon, and M. S. Marshall, “Graph
visualization and navigation in information visualization: a survey,” IEEE
Transactions on Visualization and Computer Graphics, vol. 6, pp. 24–43,
2000.

[9] R. F. Erbacher, “Intrusion behavior detection through visualization,”
SMC03 Conference Proceedings 2003 IEEE International Conference on
Systems Man and Cybernetics Conference Theme System Security and
Assurance Cat No03CH37483, vol. 3, pp. 2507–2513, 2003. [Online].
Available: \url{http://ieeexplore.ieee.org/iel5/8811/27877/01244260.pdf?
tp=&arnumber=1244260&isnumber=27877}

[10] T. Tran, E. Al-Shaer, and R. Boutaba, “Policyvis: firewall security policy
visualization and inspection,” in Proceedings of the 21st conference on
Large Installation System Administration Conference. Berkeley, CA,
USA: USENIX Association, 2007, pp. 1:1–1:16. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1349426.1349427

[11] W. Yurcik, “Tool update: visflowconnect-ip with advanced filtering
from usability testing,” in Proceedings of the 3rd international
workshop on Visualization for computer security, ser. VizSEC ’06.
New York, NY, USA: ACM, 2006, pp. 63–64. [Online]. Available:
http://doi.acm.org/10.1145/1179576.1179588

[12] Justin R. Smith, Yuichi Nakamura, and Dan Walsh, “audit2allow,” http:
// linux.die.net/man/1/audit2allow.

[13] Yuichi Nakamura, “SELinux Policy Editor(SEEdit) Administration Guide
2.1,” http:// seedit.sourceforge.net/doc/2.1/ tutorial/node9.html, February
2007.

[14] Red Hat, Inc., “Red Hat SELinux Guide, Chapter 8. Customiz-
ing and Writing Policy,” http://docs.redhat.com/docs/en-US/Red Hat
Enterprise Linux/4/html/SELinux Guide/selg-section-0120.html.

[15] Tresys Technology, “Setools: Policy analysis tools for selinux http://oss.
tresys.com/projects/setools.”

[16] Hitachi Software, “Seedit: Selinux policy editor http://seedit.sourceforge.
net.”

[17] Samb , “Samba Server,” http://www.samba.org/samba.
[18] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic

framework for performing collaborative filtering,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research
and development in information retrieval, ser. SIGIR ’99. New
York, NY, USA: ACM, 1999, pp. 230–237. [Online]. Available:
http://doi.acm.org/10.1145/312624.312682

[19] M. R. McLaughlin and J. L. Herlocker, “A collaborative filtering
algorithm and evaluation metric that accurately model the user
experience,” in Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval, ser.
SIGIR ’04. New York, NY, USA: ACM, 2004, pp. 329–336. [Online].
Available: http://doi.acm.org/10.1145/1008992.1009050

[20] Jeffrey Heer , “Prefuse (Java),” http://prefuse.org.
[21] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing integrity protection in

the selinux example policy,” in Proceedings of the 12th conference
on USENIX Security Symposium - Volume 12. Berkeley, CA,
USA: USENIX Association, 2003, pp. 5–5. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1251353.1251358

[22] W. Xu, M. Shehab, and G.-J. Ahn, “Visualization based policy analysis:
case study in selinux,” in Proceedings of the 13th ACM symposium
on Access control models and technologies, ser. SACMAT ’08. New
York, NY, USA: ACM, 2008, pp. 165–174. [Online]. Available:
http://doi.acm.org/10.1145/1377836.1377863

[23] MITRE, “Polgen: Guided auto-mated policy development. http://www.
mitre.org/tech/selinux.”


