
Towards Enhancing the Security of OAuth Implementations In Smart Phones

Mohammed Shehab and Fadi Mohsen
Department of Software and Information Systems

University of North Carolina at Charlotte
Charlotte, NC, USA

{mshehab, fmohsen}@uncc.edu

Abstract—With the roaring growth and wide adoption of
smart mobile devices, users are continuously integrating with
culture of the mobile applications (apps). These apps are not
only gaining access to information on the smartphone but
they are also able gain users’ authorization to access remote
servers on their behalf. The Open standard for Authorization
(OAuth) is widely used in mobile apps for gaining access to
user’s resources on remote service providers. In this paper, we
analyze the different OAuth implementations adopted by the
SDKs of the popular resource providers on smartphones and
demonstrate possible attacks on most OAuth implementations.
By analyzing source code of more than 430 popular Android
apps we summarized the trends followed by the service
providers and by the OAuth development choices made by
application developers. In addition, we propose an application-
based OAuth Manager framework, that provides a secure
OAuth flow in smartphones that is based on the concept of
privilege separation and does not require high overhead.

Keywords-OAuth; Smartphone apps; Security;

I. INTRODUCTION

Open standards such as Open Authorization (OAuth), al-
low the resource owner (user) to grant permissions to a third-
party (mobile app) access to their information hosted on a
resource provider (Facebook). With the OAuth technology,
the users are no longer required to share their credentials
with third party apps in order to grant them authorizations.
In addition, OAuth allows different access granularity, where
users are able to grant access to specific resources, plus
there are provisions for revoking access at any time. Other
related authorization approaches include Google AuthSub
[1], Microsoft Live ID [2], and Yahoo BBAuth [3]. OAuth
is the most adopted with over one billion OAuth-based user
accounts supported by the major online service providers.
Major services providers offer software development kits
(SDKs) that can be included in the mobile apps to seamlessly
integrate them with their services. However, if other parties
choose to develop their own libraries they are required
to follow the standards specified by the service providers.
Through the SDKs, service providers offer their own imple-
mentations of the authentication and authorization protocols.
The different OAuth implementations adopted by popular
mobile SDKs vary in their security assumptions and guaran-
tees. For instance, several mobile SDKs rely on embedded
web components to execute the OAuth authentication and
authorization stages, which does not provide the required
isolation and can easily be exploited by malicious apps.

In this paper, we analyze the different OAuth implementa-
tions adopted by the SDKs of the popular resource providers
on smartphones, which include Facebook, Twitter, Dropbox,
Microsoft Live, Google Plus, Box, Instagram, LinkedIn, and
Flickr. We describe the design and security assumptions of
each of the main OAuth flows in mobile apps, such as
using an embedded web component, native web browser, and
using a provider installed app. We demonstrate the attacks
that can be performed on the different implementations and
discuss the effect of these attacks on the trustworthiness
of the OAuth flow. To the best of our knowledge, this is
the first study that focuses on investigating the security of
the different OAuth implementations in smartphone SDKs.
We conducted an empirical study on the current OAuth
implementation trends followed by the service providers
and by the OAuth development choices made by appli-
cation developers. We downloaded from the Google Play
market more than 430 popular Android applications that
are integrated with Facebook and Dropbox services, and we
studied the decompiled source code of these applications
to summarize the OAuth design choices taken by different
developers. Each of these choices is subject to common
vulnerability. In addition, we propose an application-based
OAuth Manager framework, that provides a secure OAuth
flow in smartphones that is based on the concept of privilege
separation. We summarize our contributions as follows:

• We identifed the different OAuth implementations
in smartphones, and summarized the vulnerabilities
present in each of the implementations.

• We conducted an empirical study on the OAuth imple-
mentations in the SDKs offered by the popular resource
providers, and by the app developers.

• We proposed and implemented OAuth Manager.
• We compared our solution with other OAuth implemen-

tations in terms of performance and security.

The remainder of this paper is organized as follows.
Section II presents the OAuth flows on mobile applications,
vulnerabilities, possible attacks and defines the adversary
model. Section III shows the analysis results for the SDKs
and the collected apps, and Section IV presents our proposed
OAuth Manager approach. Section V shows the experi-
mental results. Section VI summarizes the related work.
We conclude the paper in Section VII by summarizing our
contributions.

II. OAUTH AND MOBILE APPLICATIONS

Similar to web and desktop applications, native mobile
applications (apps) in many usage scenarios require access
to user resources hosted on a resource server. Native mobile
apps that are installed and executed on mobile devices are
considered public clients and utilize special kind of user-
agents besides the system browser, called the WebView.
Thus, OAuth authorization flow steps and the logistics
beforehand differ accordingly. For instance, in case of web
applications, the authorization server grants them credentials
and passwords for the purpose of client authentication. The
web application has to keep these information confidential
and safe. In case of native applications, the authorization
server can’t use the same means (passwords and credentials)
since these clients aren’t capable of keeping such data confi-
dential. Instead, the authorization server require these clients
to register redirection URI and/or asking the resource owner
to approve identity. During the client registration process,
the client developer shall specify the client type, provide its
client redirections URIs, and some other information needed
by the authorization server.

Several of the OAuth authorization flow steps require a
user-agent, which is usually a web browser. On desktops,
the web browser’s isolation mechanisms, such as the same
origin policy, provides the required separation between the
user-agent, client and authorization server. The user-agent
presents the resource owner with the authentication and au-
thorization information, and the user-agent is used to redirect
and pass tokens between the client and the authorization
server. In mobile applications, the user agent is implemented
using WebView, system browser, and provider app. The
details of each approach will be discussed in the following
sections.

A. Embedded Web Browser Component

The web browser component is a UI view component that
can be embedded in a mobile app to display online contents
within the hosting app. This component is available in the
different mobile frameworks, WebView in Android platform,
UIWebView in iOS, and WebBrowser in Windows Phone.
The Android WebView uses the WebKit rendering engine
to display web pages and includes methods to navigate
forward and backward through a history, zoom in and out,
and perform text searches. We will focus our discussion
on the Android platform, however the following discussion
is applicable to other platforms. The WebView is used
to perform the role of the user-agent during the OAuth
authorization code flow, particularly, it is used to present
users with the required OAuth authentication and authoriza-
tion pages on mobile applications. The client app hosts a
WebView as part of its’ UI layout. The app can control
the embedded WebView, for example it can load a spe-
cific url “webview.loadUrl(URL)”, enable JavaScript
in the WebView “setJavaScriptEnabled(true)”,
register event handlers to the WebView to respond

to events and to monitor the WebView’s activity
“onLoadResource()” and “onPageFinished()”,
and inject a native (Java) object into the WebView to
allow the object’s methods to be accessed from JavaScript
“addJavascriptInterface()”.

Figure 1, shows the OAuth flow for client apps that use
an embedded web browser (WebView). The client code
triggers the WebView to load the service provider’s au-
thentication page (Step A0), where the user is promoted
to provide her username and password. The WebView also
loads the authorization page (Step B), which displays the
permissions requested by the application. Upon submission
of the authorization page, the authorization server responds
and the authentication code is sent as part of the response
page title or content (Step C0). The client code has initially
registered the event handler “onPageFinished()” to be
notified when the WebView is done loading pages. The event
handler is notified with the loading of the authentication
response page, which enables the client code to retrieve the
authentication code from the loaded page title or content
(Step C1). The client code then uses the authentication code
to retrieve the authentication token from the authorization
server (Steps D & E).

Mobile App (Client)

WebView

Client Code

Ev
en

t H
an

dl
er

Authorization
Server

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code
(title of loaded web page)

Client Identifier &
Redirection URI

(A1)

(B)

(C0)

(A0) (C1)

Resource
Owner

(B)

Figure 1. OAuth Embedded Web Client Flow

1) Attacks Against OAuth Embedded Web Browser: Using
an embedded web browser as a user-agent in a mobile
app, enables the hosting client app to fully control the
hosted WebView, which exposes the user-agent and does
not provide the required isolation between the client and
the user-agent. A malicious hosting app can take control
of the hosted WebView and launch attacks on both the
user authentication and application authorization. In what
follows, we demonstrate both attacks.
Stealing User Credentials. As discussed earlier the hosting
app and the embedded WebView can communicate seam-
lessly. An attack to steal the user credentials (username
and password) during the authentication stage can easily be
executed by a malicious app in two stages, first injecting
JavaScript in the WebView to retrieve the user’s email
and password upon clicking the submit button, and second
registering a JavaScript interface that enables the embedded
JavaScript to send the retrieved email and password to the
hosting app. Below is the sketch of native and JS code:
//Java (Native Client App)

myWebView.getSettings().setJavaScriptEnabled(true);
myWebView.addJavaScriptInterface(this , "JSInterface");
myWebView.loadUrl("javascript:" + contents of attack.js);

//JavaScript (attack.js)
var submitBtn = document.getElementById(‘btn_id’);
submitBtn.onclick = function(){
var email = document.getElementById(‘email_id’).value;
var password = document.getElementById(‘pwd_id’).value;
JSInterface.jsCall(email, password);
return true;
}

The native app (Java) initializes the required JS interface,
then injects the required attack JS. The embedded JS ex-
ecutes in the WebView and registers the required listener
to capture the email and password entered by the user.
The retrieved information is sent to the native app via
the JSInterface.jsCall() call. We developed this
attack and tested it successfully on all WebView-based SDKs
OAuth implementations. The code presented is simplified
and the actual code requires using class and type HTML
selectors.

(a) Authorization Page (b) Manipulated Page

Figure 2. Manipulating the Authorization Page

Modifying the Authorization Interface. Step B in Figure 1,
the WebView presents to the user the authorization page
which displays the list of permissions requested by the app
being installed. Figure 2(a) shows our photo sharing Face-
book application requesting access to the users’ protected
resources such as email address, profile attributes, checkins,
events, notes, photos and many other permissions. Since the
authorization page is displayed in a WebView, a malicious
client app can easily modify the list of requested permissions
displayed in the authorization page. This attack will trick
the user into incorrectly interpreting the level of access
requested by the app. Below is the JS code that should
be injected into the WebView to replace all the requested
permissions with simply “Your photos”:
var permsUL = document.getElementById(‘perm_ul’);
var permsUL.innerHTML = ‘<div>Your photos</div>’;

Figure 2(b), shows the manipulated authorization page.
Note that the user authorizing the app in Figure 2(b) is

tricked into thinking that the app is authorized to only
access her photos, while the app is being authorized for the
permissions listed in Figure 2(a).

B. System Native Browser
Several service providers rely on the system native web

browser for both the user authentication and the app au-
thorization, where the native browser is used to play the
role of the user-agent in the OAuth flow. The native
browser is a separate app and is not embedded in the
client app, which provides the required isolation between
the user-agent (native web browser) and the client app.
The native web browser communicates with the client app
through the provided mobile framework channels, where
most mobile frameworks provide mechanisms that enable
the communication and binding between different apps.
For example, the Android architecture provides an intent
messaging system for run-time binding between components
in the same or different apps. The intent holds a description
of the operation to be performed, and can contain data
to be delivered to the receiver of the intent. The apps
should inform the Android system (Intent Manager) about
the intents they are willing to receive by registering intent
filters. Each intent filter describes the intent of interest,
and is associated with a component to respond to that
intent. In early system native browser approaches, the user
was required to manually copy the access token from the
authorization page and paste it in the client application,
which was not convenient and was very confusing to users.
The current OAuth flow starts when the client app sends an

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

Figure 3. OAuth Native System Browser

intent (view, http://auth-page, parameters)
to the system intent manager to view the authorization
page, see Step A0 in Figure 3. The parameters sent in
the intent include url, app id, callback url, and requested
access (scope). The intent manager launches the native
browser which loads the requested url (Step A1). The user is
authenticated, the authorization server identifies the app and
displays the authorization page to the user (Step B). If the
user agrees to grant the requested permissions, the autho-
rization server redirects the native browser to authorization
success page (callback url), which includes the authorization

code in the url parameters (C0). To be able to pass the
authorization code from the native browser to the client
application, the callback url is set to a specific Multipurpose
Internet Mail Extensions (MIME) which instantiates an
intent to view this special callback url, for example, the url
db-key://connect?oauth_token=xx, has a special
MIME: db-key. To be able to receive intents for this
special MIME, the client application should register an intent
filter of the form(view, db-key://.). Below is the
required intent filter to be included in the client application
manifest to respond to the special view request.

<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.BROWSABLE"/>
<data android:scheme="db-INSERT_APP_KEY"></data>

</intent-filter>

The intent manager receives the view intent from the sys-
tem browser and locates the client application that registered
an intent filter to receive this intent (Step C1 and C2). When
the client app receives the intent it retrieves the access token
embedded in the intent’s data. The process is seamless to the
user and client app does not communicate directly with the
browser, instead all the communication is done through the
system intent manager.

1) Attacks against System Native Browser: Compared to
the embedded web component, the system browser provides
stronger isolation guarantees. However, a malicious app can
exploit the channel between the intent manager and the client
app. For instance, a malicious app could register similar
intent filter as the client app, which could result in passing
the access token to the malicious app. If the user has installed
both the client app and the malicious app, or if the attacker
gains a physical access and does the installation II-D, then
the system will present the user with all apps that registered
to receive the intent and will ask the user to pick the app
that should be used to receive the intent. The user can
easily be tricked into selecting the malicious app. Figure 4
shows a demonstration of this attack, The system prompts
the user to choose between the two applications (malicious
and legitimate). If the user chooses the malicious application,
GT - Document for Dropbox can steal the access token and
impersonate the legitimate app on the resource server.

Figure 4. Attack using the System Native Browser

C. Resource Provider Native App

This OAuth flow requires an installed resource provider
native app as part of the authentication and authorization
flow. For example, using the Facebook application as part
of the authorization of a client app. In this approach the
authentication and authorization processes are performed
in the context of the installed resource provider app. This
approach is similar to the OAuth flow using the native
web browser, while the only difference is that the flow
is processed through the installed resource provider app.
This approach provides the required separation between the
client and the user-agent (resource provider app) and some
provider apps maintain a user authentication session, which
does not require the user to re-authenticate during the OAuth
flow and reduces the user effort. However, this approach
requires the user to install the resource provider app for each
client that requires to access a specific resource provider.
In addition, each of the resource provider apps implements
different authorization interfaces that might differ from their
web interfaces, which can add to the factors affecting user
perception of the security warnings and can lead to users
disregarding the authorization prompts [4].

D. Adversary Model

In this paper, we assume an attacker is a skillful developer
that implements malicious apps and makes them available
on the internet. The malicious apps provide a service, like
connecting to Facebook, Twitter, etc. The apps contain code
segments for collecting users’ credentials with the different
service providers. The victim (Android user) downloads
these apps to enjoy the services they provide. An attacker
may also have a physical access to the victim device to
manually install malicious apps. The malicious apps take
advantage of the vulnerabilities that exist in the providers’
SDKs and developers’ apps. The attacker needs to have
good knowledge of these SDKs and reverse engineering
techniques.

III. APPS-SDKS ANALYSIS

In this section, we show the results of analyzing the
popular service providers SDKs and collected apps.

Policy. If an SDK or an App support or implement
WebView based OAuth flow then they are vulnerable to
attacks mentioned in Section II-A1 . Whereas, if they support
or implement system browser based OAuth then they are
vulnerable to the attack mentioned in Section II-B1. We
consider the adversary model defined in Section II-D.

Implementation. Applications for the Android platform
are comprised of Dalvik executable (DEX) files that run on
Android’s Dalvik Virtual Machine. First we downloaded the
applications’ APK files posted on the Google Play Market,
we then extracted the .jar files using the dex2jar tool,
then we extracted the source files from the jar files using
the jd-gui decompiler tool. For each app, we analyzed the
source code and reviewed the adopted OAuth flow. Similarly,

Platform Resource Provider SDK Embedded Web Component Native Browser Installable App OS Integrated

A
nd

ro
id

Facebook [5]
√ √

Twitter [6]
√

Dropbox [7]
√ √

Microsfot Live [8]
√

Box [9]
√

Google Plus [10]
√

Instagram [11]
√

Linkedin [12]
√

Flickr [13]
√

iO
S

Facebook [14]
√ √ √

Twitter [15]
√

Dropbox [7]
√ √

Microsoft Live [16]
√

Box [17]
√

Google Plus [18]
√ √

Instagram [19]
√ √

Linkedin [20]
√

Flickr [21]
√

Table I
OAUTH SDKS AND AUTHENTICATION METHODS

we manually investigate the SDKs source code to identify
the OAuth flow methods.

We conducted an empirical study on the current OAuth
implementation trends followed by the service providers and
by the OAuth development choices made by application
developers. We reviewed the OAuth based SDKs supported
by the popular resource providers such as Facebook, Twitter,
Dropbox, Microsoft Live, Google Plus, Box, Instagram,
LinkedIn, and Flickr. Table I shows the types of OAuth im-
plementations adopted by the SDKs of the different resource
providers for both the Android and iOS frameworks. As can
be noted from our results, some SDKs support more than one
OAuth flow. For example, the Dropbox SDK for Android
provides both native browser and installable provider app
based OAuth flows. It is also notable that several SDKs
such as Microsoft Live, Box and Instagram, for Android
only, support the WebView based OAuth flow. Also for
iOS, the Microsoft Live, Box and LinkedIn only support
the UIWebView based OAuth flow. This shows that service
providers have varying security aware implementations for
their OAuth SDKs, some providers are more security aware
than others by limiting their implementation to more secure
OAuth flows such as native browsers or installable apps.

Forced WebView Forced FB App Default SDK Logic

%
a
g
e
 s

c
a
n
n
e
d
 a

p
p
s

0

10

20

30

40

50

60

70

80

22%

68%

22%

3%

56%

29%

Used Facebook SDK

Not Using Facebook SDK

Figure 5. Facebook OAuth Implementations

To study the behavior of SDKs that provide multiple
OAuth flow implementations we focus on the Facebook SDK

for Android, which allows the OAuth flow to take place
either through a WebView or through the Facebook instal-
lable app. The default Facebook Android SDK [5] initially
queries the system to check if its Facebook app is installed,
if it is, the OAuth flow will proceed through the installed
Facebook app, otherwise an embedded WebView will be
used. The SDK is open source and app developers can adapt
its behavior. In order to study how the developers adapt the
default Facebook SDK, we analyzed popular applications
which are integrated with Facebook and Dropbox services.
We analyze 231 Facebook integrated apps, 68% of these
apps imported the Facebook SDK and 32% did not use the
Facebook SDK and included their own implementations of
OAuth. For the apps that used the Facebook SDK we found
that 56% of the developers imported the SDK without any
changes, 22% of the apps chose to force the WebView based
flow (OAuth Dialog), and 22% requested authentication
using the installed Facebook App. On the other hand, for
the apps that did not use the Facebook SDK we found
that 68% used the WebView based flow, only 3% requested
authentication using the installed Facebook App, and 29%
implemented a flow similar to the default Facebook SDK
flow. Figure 5, summarizes the statistics collected for the
Facebook integrated apps.

Forced Browser Browser + Dropbox App

%
a
g
e
 s

c
a
n
n
e
d
 a

p
p
s

0

10

20

30

40

50

60

70

80

90

100

0%

26%

100%

74%

Used Dropbox SDK

Not Using Dropbox SDK

Figure 6. Dropbox OAuth Implementations

We also found that, only 3% of all apps prompted the

users to install the Facebook App from the market upon
the first run. Moreover, we analyze 202 Dropbox integrated
apps, 50% of these apps imported the Dropbox SDK and
the other 50% did not use the Dropbox SDK and included
their own implementations of OAuth. All the apps that used
the Dropbox SDK did not change its default behavior and
adopted both the native browser and Dropbox app flows. On
the other hand, for apps that did not use the Dropbox SDK
we found that 26% used the native browser flow, and 74%
implemented a flow similar to the default Dropbox SDK
flow. Figure 6, summarize the statistics collected for the
Dropbox integrated apps. We also found that, only 0.5%
of all apps prompted the users to install the Dropbox app
from the market upon the first run.

Summary. Our study shows that 47% of collected Face-
book apps are vulnerable to the attacks mentioned in Sec-
tion II-A1. Moreover, up to 87% of collected Dropbox Apps
are vulnerable to the attack mentioned in Section II-B1.

IV. PROPOSED APPROACH

We propose to use the privilege separation [22] concept
to ensure that the client application has no control over the
user-agent. We removed the critical OAuth components and
implemented it in a separate application (secure sandbox),
which we refer to as the OAuth Manager. While many
aspects of the proposed solution is applicable for other smart
phone platforms (iOS, and Windows Phone), we focus our
discussion on Android platform. The user-agent used is a
WebView embedded in the trusted OAuth Manager app,
which isolates it from the client application and can be
accessed only through the secured channel that is managed
by the system (Intent Manager).

Android
SDK

Client
SDK

OAuth
SDK

Host Application

API Calls

Application Process

Android
SDK

Protected
WebView

API Calls

OAuth Manager Process

Android Kernel

Inter-Process Message
Passing (Intent Manager)

Host Application

Permission
Manager

Figure 7. OAuth Manager running on a separate application and commu-
nicating with the client apps via the intents

Figure 7, shows the OAuth Manager framework. The
OAuth Manager is implemented as a separate application,
and is responsible for displaying the authorization and
authentication in an embedded web component hosted
in the OAuth manager and is accessible to the client
app. The flow starts when the client application sends
an intent to the Intent Manager requesting to start the
OAuth Manager application and passes it the required
OAuth parameters such as the client app id, secret, and
requested permissions (scope). OAuth Manager is started
and passed the required parameters. The OAuth Manager
ensures that the client application is a signed application
and contacts the systems permission manager to verify that

the client application is granted the internet permission
android.permission.INTERNET, which avoids
the privilege escalation scenario. The OAuth flow would
terminate if the client application is not granted the internet
permission, otherwise the authentication and authorization
steps are completed, and the auth code is retrieved in the web
component embedded in the OAuth Manager. This form of
isolation will ensure that the client application is not able to
manipulate and control the authentication and authorization
pages. Moreover, for the purpose of preventing from the
impersonation attack (hijaking the token) OAuth Manager
includes a routine that works upon running it on the device
to the first time and whenever a new app is installed. The
routine is meant to verify that no other app is registered
to handle intents similar to the one that OAuth Manger
handles. In the manifest, we statically register a Broadcast
receiver that listens to the following system actions:
android.intent.action.PACKAGE_INSTALL and
android.intent.action.PACKAGE_ADDED. The
system will notify OAuth Manager if a new package is
installed. In the OnReceive method, an instance of the
PackageManager is used to filter the apps that included in
their manifests an intent filter for the OAuth Manger custom
intent. If such apps exist, OAuth Manger notifies the user
of their existence and ask her to uninstall them. As the final
step, the OAuth Manager sends the retrieved OAuth access
code to the client application through the Intent Manager
as a result to the requested intent result. Then the OAuth
Manager automatically finishes and destroys its process.
To the user the execution is transparent and is very similar
to the WebView experience. To the developer the SDK can
be easily updated to open the OAuth Manager instead of
opening an embedded WebView, which is a very minor
change to the original resource provider SDK.

V. PERFORMANCE
For the purpose of comparing our proposed OAuth Man-

ager approach with the other OAuth flow implementations,
we conducted a performance study based on memory con-
sumption and response time. We performed our experiment
on a standard Android developer phone, the Nexus S, that
has android version 4.1.2, 1007.89 MB internal memory,
13624.34 MB SDCard, 343 MB RAM, system browser
4.1.2-485486. The performance analysis is focused on study-
ing the overhead caused by adopting our method as an
authentication and authorization method.

A. Response time
We performed benchmarking to estimate the overhead

of OAuth manager on displaying the authentication page.
It is the required by the OAuth flow implementation to
complete the loading of the authentication page after the user
authentications. For this purpose, we used Android Logging
System, we added hooks to the code to record the time
samples immediately after the user clicks the login button,
and promptly after successfully loading the authentication
page. Our experiment is conducted using the Facebook

OAuth flow. Table II shows the time in milliseconds required
by the different OAuth flow implementations. The OAuth
Manager is faster than the system browser and the embedded
WebView. The OAuth Manager is slightly slower than the
Facebook App, this is because the Facebook App does
not use any embedded WebViews and relies on simple api
calls. In addition, it is important to note our code was not
optimized and was designed to provide OAuth flows for
different service provider apps.

Method Response(milliseconds)
System Browser 3429

Embedded WebView 8077
Facebook App 1879

OAuth Manager 1892

Table II
COMPARISON OF RESPONSE TIME (MILLISECONDS)

B. Memory overhead

We used the Android Debug Bridge (adb) to measure
memory overhead. The adb is a versatile command line
tool that enables us to communicate with an emulator
instance or a connected Android-powered device. In our
case, we used Android-powered device, Nexus S. We ran
our test application multiple times and each time we used
different a authentication method. We recorded the memory
consumption for each method. In interpreting our results we
are primarily concerned with the proportional set size, which
is (Pss) the amount of memory shared with other processes,
divided equally among the processes who share it. Table III
shows that OAuth Manager memory requirements a memory
footprint lower than the native browser and the Facebook
App. However, the OAuth Manager requires more memory
than the embedded WebView, this is due to the required
security checks. In addition, the OAuth Manager code was
not optimized for memory usage. The embedded WebView
has shown to be insecure and has the possibility of leaking
users’ sensitive data. In contrast, OAuth Manager offers a
secure solution and protects the content from being stolen
or manipulated.

C. Security Analysis

The OAuth flow based on OAuth Manager is more secure
than the other flows: II-B and II-A. OAuth Manager flow
is safe and provides the measures to prevent from the
three attacks: the two in Section II-A1, and the attack in
Section II-B1. By taking the WebView component out and
hosting it in a separate isolated process, it removes the
vulnerabilities that are caused by WebView based attacks.
Moreover, it uses explicit intents plus a routine that is called
upon installation and upon installing any new App to avoid
other apps from listening to the same intent and thereby
avoiding attacks discussed in Section II-B1.

VI. RELATED WORK
Prior work on OAuth client-flow security by Sun and

Beznosov [23] concluded that the client-flow is inherently
insecure and warned from putting OAuth 2.0 at the hand

Method Memory (kB)
System Browser 41386

Embedded WebView 5525
Facebook App 22114

OAuth Manager 13518

Table III
COMPARISON OF MEMORY CONSUMPTION (KB)

of developers. R. Paul [24] highlighted some of the se-
curity flaws in Twitter OAuth implementations that enables
an attack on client credentials in desktop applications. A
similar OAuth flaw was detected by Pai et al. using formal
verification of the OAuth protocol. Formal verification was
also used by Wang et al. [25] on some service providers’
SDKs, their findings showed that apps constructed by im-
porting these SDKs were found to be vulnerable to serious
exploits. Their work distinguished five types of secrets in
the studied SDKs: access tokens, codes, refresh tokens, app
secrets and session IDs. In our work we focus on the
possibility of compromising resource owners’ credentials
by apps developers. McGloin and Hunt [26] defined the
threat caused by misusing an embedded browser in the end-
user authorization process, or by presenting its own user-
interface instead of allowing trusted browser to render the
authorization user interface. As a result, the user would not
be aware and all information in the authorization exchange
could be captured such as username and password. As a
recommendation, they suggested to educate developers and
end-users to trust an external System-Browser only. A. Wulf
[27] explained how native mobile applications developers are
still able to access (steal) users’ password even when using
OAuth for login. Prior work on WebView vulnerability has
not considered its impact on OAuth. Luo et al. [28] explained
the risk of using WebView and its APIs on web’s security.
They presented some attacks and analyzed their fundamental
causes, however, they didn’t offer any solution. TaintDroid
[29] and PiOS [30] study information flow on the two
most dominant smartphone platforms: Google’s Android and
Apple’s iOS. Social networking applications were among
their list, apps that violate users’ privacy. The method of
isolating the privileged parts of mobile applications has been
used in the mobile advertisement arena in [31], [32] to en-
able applications to show advertisements without requesting
privacy-sensitive permissions. Leontiadis et al. [33] used
separate applications solution but also utilized in-application
widgets and IPC.

VII. CONCLUSION

The different OAuth implementations adopted by pop-
ular mobile SDKs vary in their security assumptions and
guarantees. In this paper, we described the design and
security assumptions of each of the main OAuth flows in
mobile apps, such as using an embedded web component,
native web browser, and using a provider installed app.
We demonstrated the attacks that can be performed on
the different implementations and discussed the effect of
these attacks on the trustworthiness of the OAuth flow. We

analyzed the SDKs provided by major resource providers.
We conducted an empirical study on the current OAuth
implementation trends followed by the service providers and
by the OAuth development choices made by application de-
velopers. We downloaded from the Google Play market more
than 430 popular Android applications that are integrated
with Facebook and Dropbox services, and we studied the
decompiled source code of these applications to summarize
the OAuth design choices taken by different developers.
We compared the implementations of the developers who
adopted the SDKs and the developers that built their own
implementations. We proposed an application-based OAuth
Manager framework, that provides a secure, light, and fast
OAuth flow for mobile applications that is based on the
concept of privilege separation. For developers, we urge
them to consider users’ privacy when implementing OAuth
by: avoid using WebView-based OAuth, prompt the user to
install service providers native app, and if the web browser
is the only choice left then make sure to add a routine to
detect malicious apps that may hijack the auth token.

VIII. ACKNOWLEDGMENTS

This research was partially supported by grants from
the National Science Foundation (NSF-CNS-0831360, NSF-
CNS-1117411) and a Google Research Award.

REFERENCES

[1] Google, “Google’s AuthSub authentication.” http://code.
google.com/apis/accounts/docs/AuthSub.html, 2008.

[2] Microsoft, “Microsoft Live Connect.” http://msdn.microsoft.
com/en-us/windowslive/default.aspx, 2010.

[3] Yahoo Inc., “Yahoo Browser-based Authentication.” http:
//developer.yahoo.com/auth, 2008.

[4] A. Mylonas and A. Kastania, “Delegate the smartphone user?
Security awareness in smartphone platforms,” http://www.
sciencedirect.com/science/article/pii/S0167404812001733,
pp. 47–66, 2013.

[5] Facebook, “Facebood SDK for android.” https://github.com/
facebook/facebook-android-sdk, 2012.

[6] Open Source, “Unofficial Java library for the Twitter
API (version 3.0.4-SNAPSHOT),” https://github.com/yusuke/
twitter4j/, 2013.

[7] Dropbox, “Core API Development kits and documentation
(version 1.5.4),” https://www.dropbox.com/developers/core/
sdk, 2013.

[8] Microsoft, “The Live SDK for Android library (version 5.0),”
https://github.com/liveservices/LiveSDK-for-Android, 2013.

[9] Box, “Box SDK for Android (version 2.0),” https://github.
com/box/box-android-sdk, 2013.

[10] Google, “Google+ Platform for Android (version
1.3.0),” https://developers.google.com/+/mobile/android/
getting-started, 2013.

[11] Instgram, “Instagram client for Android (version 1.86),” https:
//github.com/markchang/android-instagram/, 2013.

[12] Linkedin, “A java wrapper for linkedin API (version
1.0.429),” http://code.google.com/p/linkedin-j/, 2013.

[13] Open Source, “A java flickr API library (version
2.0.0),” http://code.google.com/p/flickrj-android/wiki/
HowToGuide4Android/, 2013.

[14] Facebook, “The Facebook SDK for iOS (version 3.5.1),”
https://developers.facebook.com/ios/, 2013.

[15] Twitter-iOS, “Twitter iOS Integration (version 1.1),” https:
//dev.twitter.com/docs/ios/, 2013.

[16] Microsoft, “The Live SDK for iOS library (version 5.0),”
https://github.com/liveservices/LiveSDK-for-ios, 2013.

[17] Box, “Box SDK for iOS (version 1.0),” https://github.com/
box/box-ios-sdk, 2013.

[18] Google, “Google+ Platform for iOS (version 1.3.0),” https:
//developers.google.com/+/mobile/ios/, 2013.

[19] Instagram, “Instagram iOS Authentication (version 1),” http:
//instagram.com/developer/authentication/#/, 2013.

[20] Open Source, “API Kits (version 1.1),” http://www.
whitneyland.com/2011/03/iphone-oauth.html/, 2013.

[21] ——, “A java flickr API library (version 2.0),” https://github.
com/lukhnos/objectiveflickr/, 2013.

[22] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley,
CA, USA: USENIX Association, 2003.

[23] S.-T. Sun and K. Beznosov, “The devil is in the (implementa-
tion) details: An empirical analysis of oauth sso systems,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY,
USA: ACM, 2012, pp. 378–390.

[24] R. Paul, “Compromising Twitter’s OAuth security
system,” http://arstechnica.com/security/2010/09/
twitter-a-case-study-on-how-to-do-oauth-wrong/.

[25] R. Wang, Y. Zhou,S. Chen, S. Qadeer, D. Evans, Y. Gurevich,
“Explicating SDKs: Uncovering Assumptions Underlying
Secure Authentication and Authorization ,” http://research.
microsoft.com/pubs/188979/ExplicatingSDKs-TR.pdf/, 2013.

[26] M. McGloin and P. Hunt, “OAuth 2.0 Threat Model
and Security Considerations,” http://tools.ietf.org/id/
draft-ietf-oauth-v2-threatmodel-00.txt/, 2011.

[27] A. Wulf, “Stealing Passwords is Easy in Native Mobile Apps
Despite OAuth,” http://goo.gl/QskLq, accessed: 03/12/2013.

[28] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “Attacks
on webview in the android system,” in Proceedings of the
27th Annual Computer Security Applications Conference, ser.
ACSAC ’11. New York, NY, USA: ACM, 2011.

[29] W. Enck and P. Gilbert and B. Chun and L. Cox and J. Jung
and P. McDeniel and A. Sheth , “TaintDroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones,” 2010, pp. 1–6.

[30] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting Privacy Leaks in iOS Applications,” in Proceedings
of the Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2011.

[31] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: separating
smartphone advertising from applications,” in Proceedings
of the 21st USENIX conference on Security symposium, ser.
Security’12, Berkeley, CA, USA, 2012.

[32] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “AdDroid:
Privilege separation for applications and advertisers in An-
droid,” in Proceedings of AsiaCCS, May 2012.

[33] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo,
“Don’T Kill My Ads!: Balancing Privacy in an Ad-supported
Mobile Application Market,” in Proceedings of the Workshop
on Mobile Computing Systems & Applications, 2012.

