
IEEE MS 2014. Anchorage, AK

Towards Enhancing the Security
of OAuth Implementations In

Smart Phones
Mohamed Shehab and Fadi Mohsen

!
Department of Software and Information Systems

College of Computing and Informatics
University of North Carolina at Charlotte

IEEE MS 2014. Anchorage, AK

Introduction
• What is OAuth?

2

IEEE MS 2014. Anchorage, AK

Introduction
• The Open Authorization (OAuth) standard, enables the

resource owner (user) to grant permissions to a third-party
(mobile app) access to their resources that are hosted on a
resource provider (Facebook).

• With OAuth, the users are no longer required to share their
credentials with third party apps in order to grant them
authorizations.

• Who uses OAuth? All major service and resource providers
such as Google, Facebook, Microsoft, Twitter, Dropbox,
GitHub, Salesforce and many others.

3

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)

4

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

4

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4

User
(Resource Owner)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4

Authorization  
Server

User
(Resource Owner)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

User
(Resource Owner)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

User
(Resource Owner)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

1. Authenticate (username/password)

User
(Resource Owner)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

1. Authenticate (username/password)

User
(Resource Owner)

2. Approve requested access

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

1. Authenticate (username/password)

3. send  
access token

User
(Resource Owner)

2. Approve requested access

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• The OAuth framework enables the user to issue access tokens

to the third party apps to make api requests on behalf of the
user.

• These access tokens have limited scope. Which limits the
permissions granted to the third party app.

4
Client

Authorization  
Server

1. Authenticate (username/password)

3. send  
access token

User
(Resource Owner)

2. Approve requested access

Token  
scope: {post on wall, read photos}

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User visits the client site.

5

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User visits the client site.

5

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

6

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

6

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

7

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

7

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

7

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to connect or login using Facebook

7

Isolation
provided by

browser

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

8

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

8

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

8

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

8

Isolation
provided by

browser

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

8

Isolation
provided by

browser

Requested
Permissions

(scope)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

9

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

9

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• User asked to grant authorization (scope).

9

Requested
Permissions

(scope)

IEEE MS 2014. Anchorage, AK

Introduction (OAuth Flow)
• App gains access to user resources.

10

IEEE MS 2014. Anchorage, AK

Web App OAuth Flow
• The user agent is usually the browser

• The user interacts through the browser
• The browser provides the required isolation between the client and

the authorization server.

11

Resource
Owner

Client

Authorization
Server

(B)

User-Agent

(A) (C)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A)

(B)

(C)

IEEE MS 2014. Anchorage, AK

Web App OAuth Flow
• The user agent is usually the browser

• The user interacts through the browser
• The browser provides the required isolation between the client and

the authorization server.

11

Resource
Owner

Client

Authorization
Server

(B)

User-Agent

(A) (C)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A)

(B)

(C)

IEEE MS 2014. Anchorage, AK

Web App OAuth Flow
• The user agent is usually the browser

• The user interacts through the browser
• The browser provides the required isolation between the client and

the authorization server.

11

Resource
Owner

Client

Authorization
Server

(B)

User-Agent

(A) (C)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A)

(B)

(C)

IEEE MS 2014. Anchorage, AK

Web App OAuth Flow
• The user agent is usually the browser

• The user interacts through the browser
• The browser provides the required isolation between the client and

the authorization server.

11

Resource
Owner

Client

Authorization
Server

(B)

User-Agent

(A) (C)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A)

(B)

(C)

Isolation.

IEEE MS 2014. Anchorage, AK

OAuth in Smart Phones

12

IEEE MS 2014. Anchorage, AK

OAuth in Smart Phones
• Several smart phone apps request access to user resources

that are hosted in resource providers.
• For example, photo sharing application requesting access to user’s

Facebook photo albums.

12

IEEE MS 2014. Anchorage, AK

OAuth in Smart Phones
• Several smart phone apps request access to user resources

that are hosted in resource providers.
• For example, photo sharing application requesting access to user’s

Facebook photo albums.

• The main challenges in OAuth implementation in smart phone
apps are:
• How to implement the user-agent?
• How to communicate the token from the user-agent to the app

(client).

12

IEEE MS 2014. Anchorage, AK

Our Contributions

13

IEEE MS 2014. Anchorage, AK

Our Contributions
• We identified the different OAuth implementations in smart

phone frameworks, and summarized the vulnerabilities
present in each of the implementations.

13

IEEE MS 2014. Anchorage, AK

Our Contributions
• We identified the different OAuth implementations in smart

phone frameworks, and summarized the vulnerabilities
present in each of the implementations.

• We conducted an empirical study on the OAuth
implementations in the SDKs offered by the popular resource
providers, and by the app developers.

13

IEEE MS 2014. Anchorage, AK

Our Contributions
• We identified the different OAuth implementations in smart

phone frameworks, and summarized the vulnerabilities
present in each of the implementations.

• We conducted an empirical study on the OAuth
implementations in the SDKs offered by the popular resource
providers, and by the app developers.

• We proposed a framework (OAuth Manager) that can provide
protections against current OAuth vulnerabilities in smart
phones.

13

IEEE MS 2014. Anchorage, AK

Our Contributions
• We identified the different OAuth implementations in smart

phone frameworks, and summarized the vulnerabilities
present in each of the implementations.

• We conducted an empirical study on the OAuth
implementations in the SDKs offered by the popular resource
providers, and by the app developers.

• We proposed a framework (OAuth Manager) that can provide
protections against current OAuth vulnerabilities in smart
phones.

• We compared our framework with other OAuth
implementations in terms of performance and security.

13

IEEE MS 2014. Anchorage, AK

OAuth in Smart Phones
• There are three main approaches for implementing OAuth in

smart phone apps
• Type 1: Through an Embedded Web Browser Component.

• Type 2: Using the Native Browser.

• Type 3: Using the Provider’s Native App.

14

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

15

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is a UI component
that can be embedded in a mobile app to render online
content within the hosting app.
• WebView in Android.
• UIWebView in iOS.
• WebBrowser in Windows.

15

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is a UI component
that can be embedded in a mobile app to render online
content within the hosting app.
• WebView in Android.
• UIWebView in iOS.
• WebBrowser in Windows.

• The embedded web browser component executes in the
context of the hosting app and can be controlled, monitored
and manipulated by the hosting app.

15

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is used to:
• present the user with the authentication page (username/password).
• present the user with the authorization page listing the required

permissions.

16

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is used to:
• present the user with the authentication page (username/password).
• present the user with the authorization page listing the required

permissions.

16

Mobile App (Client)

WebView

Client Code

Ev
en

t H
an

dl
er

Authorization
Server

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code
(title of loaded web page)

Client Identifier &
Redirection URI

(A1)

(B)

(C0)

(A0) (C1)

Resource
Owner

(B)

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is used to:
• present the user with the authentication page (username/password).
• present the user with the authorization page listing the required

permissions.

16

Mobile App (Client)

WebView

Client Code

Ev
en

t H
an

dl
er

Authorization
Server

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code
(title of loaded web page)

Client Identifier &
Redirection URI

(A1)

(B)

(C0)

(A0) (C1)

Resource
Owner

(B)

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is used to:
• present the user with the authentication page (username/password).
• present the user with the authorization page listing the required

permissions.

16

Mobile App (Client)

WebView

Client Code

Ev
en

t H
an

dl
er

Authorization
Server

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code
(title of loaded web page)

Client Identifier &
Redirection URI

(A1)

(B)

(C0)

(A0) (C1)

Resource
Owner

(B)

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• The embedded web browser component is used to:
• present the user with the authentication page (username/password).
• present the user with the authorization page listing the required

permissions.

16

Mobile App (Client)

WebView

Client Code

Ev
en

t H
an

dl
er

Authorization
Server

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code
(title of loaded web page)

Client Identifier &
Redirection URI

(A1)

(B)

(C0)

(A0) (C1)

Resource
Owner

(B)

No Isolation!!

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

17

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• No isolation between the user-agent and the client (app). The
client app is both the user-agent and the client app.

17

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• No isolation between the user-agent and the client (app). The
client app is both the user-agent and the client app.

• A malicious hosting app can take control of the hosted web
browser component and launch attacks on both the user
authentication and application authorization pages:

17

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• No isolation between the user-agent and the client (app). The
client app is both the user-agent and the client app.

• A malicious hosting app can take control of the hosted web
browser component and launch attacks on both the user
authentication and application authorization pages:
• Can steal the user password

17

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• No isolation between the user-agent and the client (app). The
client app is both the user-agent and the client app.

• A malicious hosting app can take control of the hosted web
browser component and launch attacks on both the user
authentication and application authorization pages:
• Can steal the user password
• Can modify the authorization page to spoof the user into authorizing

permissions to the hosted app.

17

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Can register event handlers in the loaded page to send the
username/password to the hosting app.

18

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Can register event handlers in the loaded page to send the
username/password to the hosting app.

18

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Can register event handlers in the loaded page to send the
username/password to the hosting app.

18

Register an
event handler
to retrieve the

password

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Can register event handlers in the loaded page to send the
username/password to the hosting app.

18

Register an
event handler
to retrieve the

password

//Java (Native Client App)
myWebView.getSettings().setJavaScriptEnabled(true);
myWebView.addJavaScriptInterface(this , "JSInterface");
myWebView.loadUrl("javascript:" + contents of attack.js);

//JavaScript (attack.js)
var submitBtn = document.getElementById('btn_id');
submitBtn.onclick = function(){

var email = document.getElementById('email_id').value;
 var password = document.getElementById('pwd_id').value;
 JSInterface.jsCall(email, password);
 return true;
}

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

Original
requested

permissions

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

Original
requested

permissions

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

Original
requested

permissions

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

Original
requested

permissions

Manipulated
requested

permissions

IEEE MS 2014. Anchorage, AK

 Type 1: Embedded Web Browser Component

• Manipulate the authorization page to show a different set of
permissions than what the user is actually authorizing.

19

var permsUL = document.getElementById('perm_ul');
var permsUL.innerHTML = '<div>Your photos</div>';

Original
requested

permissions

Manipulated
requested

permissions

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• The client app registers a system wide handler to listen to specific

data requests of type “data-code://auth-token“

• The client app sends the user to the native web browser to perform
the authentication and authorization stages.

• The browser sends the access token by invoking a request to a url
“data-code://auth-token“

20

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

data-code://auth
data-code://auth

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• The client app registers a system wide handler to listen to specific

data requests of type “data-code://auth-token“

• The client app sends the user to the native web browser to perform
the authentication and authorization stages.

• The browser sends the access token by invoking a request to a url
“data-code://auth-token“

20

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

Message passing
managed by the

mobile framework.

data-code://auth
data-code://auth

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• The client app registers a system wide handler to listen to specific

data requests of type “data-code://auth-token“

• The client app sends the user to the native web browser to perform
the authentication and authorization stages.

• The browser sends the access token by invoking a request to a url
“data-code://auth-token“

20

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

Message passing
managed by the

mobile framework.

data-code://auth
data-code://auth

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• The client app registers a system wide handler to listen to specific

data requests of type “data-code://auth-token“

• The client app sends the user to the native web browser to perform
the authentication and authorization stages.

• The browser sends the access token by invoking a request to a url
“data-code://auth-token“

20

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

Message passing
managed by the

mobile framework.

data-code://auth
data-code://auth

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• The client app registers a system wide handler to listen to specific

data requests of type “data-code://auth-token“

• The client app sends the user to the native web browser to perform
the authentication and authorization stages.

• The browser sends the access token by invoking a request to a url
“data-code://auth-token“

20

Resource
Owner

(B0)

(A0) (C2)

(E)

(D)
Authorization Code &

Redirection URI
Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

Native Browser

Re
gi

st
er

In

te
nt

 F
ilte

r

(A1) (C1)

Authorization
Server

Isolation.

Message passing
managed by the

mobile framework.

data-code://auth
data-code://auth

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• Using the native browser provides the required isolation,

however the token can be stolen when it is being returned to the
client app.

• A malicious app can exploit the channel between the browser
and the client app.

• Impersonation Attack: A malicious app an register to listen to
the same specific data request that the client app is registered
to listen to, which could result in passing the access token to the
malicious app.

21

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• Because more than one app has registered to listen to the same

data type, the user will be asked to choose which app to start.

22

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• Because more than one app has registered to listen to the same

data type, the user will be asked to choose which app to start.

22

IEEE MS 2014. Anchorage, AK

Type 2: Using the Native Browser
• Because more than one app has registered to listen to the same

data type, the user will be asked to choose which app to start.

22

Malicious App

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• This approach requires the resource provider’s native app to
be an installed on the smart phone. It is assumed that that the
provider’s app is trusted.

• The client app sends the user to the provider’s native app to
perform the authentication and authorization stages.

23

Resource
Provider Native

App
Resource

Owner

(B0)

(A0) (C2)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

(A1) (C1)

Authorization
Server

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• This approach requires the resource provider’s native app to
be an installed on the smart phone. It is assumed that that the
provider’s app is trusted.

• The client app sends the user to the provider’s native app to
perform the authentication and authorization stages.

23

Resource
Provider Native

App
Resource

Owner

(B0)

(A0) (C2)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

(A1) (C1)

Authorization
Server

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• This approach requires the resource provider’s native app to
be an installed on the smart phone. It is assumed that that the
provider’s app is trusted.

• The client app sends the user to the provider’s native app to
perform the authentication and authorization stages.

23

Resource
Provider Native

App
Resource

Owner

(B0)

(A0) (C2)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

(A1) (C1)

Authorization
Server

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• This approach requires the resource provider’s native app to
be an installed on the smart phone. It is assumed that that the
provider’s app is trusted.

• The client app sends the user to the provider’s native app to
perform the authentication and authorization stages.

23

Resource
Provider Native

App
Resource

Owner

(B0)

(A0) (C2)

(E)

(D) Authorization Code &
Redirection URI

Access Token

User Authenticates

Authentication Code

Client Identifier &
Redirection URI

(A2)

(B1)

(C0)

System Intent
Manager

Mobile App (Client)

(A1) (C1)

Authorization
Server

Isolation.

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

24

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• Isolation is provided through the system message passing
system.

24

IEEE MS 2014. Anchorage, AK

Type 3: Using the Resource Provider’s App

• Isolation is provided through the system message passing
system.

• The main weakness of this approach is that:
• The user has to install the provider’s app for each service provider

they want to use this approach for.
• Each provider app has a different OAuth flow which makes it difficult

for the user to comprehend the OAuth stages.
• In some cases a malicious app can impersonate the provider’s app

and in such case it can retrieve the user’s username/password and
can completely control the OAuth flow.

24

IEEE MS 2014. Anchorage, AK

SDKs and Apps Study

25

IEEE MS 2014. Anchorage, AK

SDKs and Apps Study
• Major services providers offer software development kits

(SDKs) that can be included in the mobile apps to seamlessly
integrate them with their services.

25

IEEE MS 2014. Anchorage, AK

SDKs and Apps Study
• Major services providers offer software development kits

(SDKs) that can be included in the mobile apps to seamlessly
integrate them with their services.

• We conducted an empirical study on the current OAuth
implementation trends followed by different service providers
and by the OAuth development choices made by application
developers.

25

IEEE MS 2014. Anchorage, AK

SDKs and Apps Study
• Major services providers offer software development kits

(SDKs) that can be included in the mobile apps to seamlessly
integrate them with their services.

• We conducted an empirical study on the current OAuth
implementation trends followed by different service providers
and by the OAuth development choices made by application
developers.

• In this study:
• We used 9 resource providers’ SDKs.
• We investigated the two most popular platforms (iOS and Android).
• We downloaded, decompiled and analyzed:

• 231 Facebook integrated apps.
• 202 Dropbox integrated apps.

25

IEEE MS 2014. Anchorage, AK

OAuth SDK Implementations

26

OAuth SDKs and Authentication Models

IEEE MS 2014. Anchorage, AK

OAuth Implementation Stats
• We downloaded and analyzed 231 Facebook integrated apps

from Google Play.

27

Forced WebView Forced FB App Default SDK Logic

%
a
g
e
 s

ca
n
n
e
d
 a

p
p
s

0

10

20

30

40

50

60

70

80

22%

68%

22%

3%

56%

29%

Used Facebook SDK
Not Using Facebook SDK

IEEE MS 2014. Anchorage, AK

OAuth Implementation Stats
• We downloaded and analyzed 202 Dropbox integrated apps

from Google Play.

28

Forced Browser Browser + Dropbox App

%
ag

e
sc

an
ne

d
ap

ps

0

10

20

30

40

50

60

70

80

90

100

0%

26%

100%

74%

Used Dropbox SDK
Not Using Dropbox SDK

IEEE MS 2014. Anchorage, AK

Proposed Approach (OAuth Manager)

• We propose to use the privilege separation concept to ensure
that the client application has no control over the user-agent.

• Based on privilege separation, we removed the critical OAuth
components and implemented it in a separate application
(secure sandbox).

29

Android
SDK

Client
SDK

OAuth
SDK

Host Application

API Calls

Application Process

Android
SDK

Protected
WebView

API Calls

OAuth Manager Process

Android Kernel

Inter-Process Message
Passing (Intent Manager)

Host Application

Permission
Manager

Detects
impersonation

attacks.

Provides required	

isolation

IEEE MS 2014. Anchorage, AK

Proposed Approach (OAuth Manager)

• We conducted performance analysis on our prototype, we
measured the response time and the memory usage.

• We performed our experiments on a standard Android device,
the Nexus S, that has android version 4.1.2, 1007.89 MB internal
memory, 13624.34 MB SDCard, 343 MB RAM, system browser
version 4.1.2-485486.

• We also analyzed the security of our framework:
• Detects impersonation attack.
• Prevents from stealing and modification attacks.

30

IEEE MS 2014. Anchorage, AK

OAuth Manager Memory Analysis

• We used the Android Debug Bridge (adb) to measure memory
overhead.

• We ran out test application multiple times and each time we
used different authentication method. We recorded the
memory consumption for each method (proportional set size).

31

IEEE MS 2014. Anchorage, AK

OAuth Manager Response Time Analysis

• We performed benchmarking to estimate the overhead of
OAuth Manager on displaying pages.

• We used Android Logging System, we added hooks to the
code to record the time samples immediately after the user
clicks the login button and promptly after successfully loading
the authentication page.

32

IEEE MS 2014. Anchorage, AK

OAuth Manager Security Analysis

• The OAuth flow based on OAuth Manager is more secure than
the other flows, it provides the measures to prevent from the
aforementioned attacks.

• It isolates the user-agent and the client apps. It provides a
secure WebView that is not accessible to the client app.

• It detects impersonation attacks by scanning the installed
packages and detecting possible malicious registered
handlers.

33

IEEE MS 2014. Anchorage, AK

Conclusion and Future Work
• Conclusion:

• We described the design and security assumptions of each of the
main OAuth implementations in smart phone apps.

• We demonstrated the attacks that can be performed on the
different implementations and discussed their effects.

• We conducted an empirical study on the current OAuth
implementation trends followed by the service providers and by the
OAuth development choices made by app developers.

• We proposed an application-based OAuth Manager framework,
that provides a secure, light, and fast OAuth flow.

• Future Work:
• Investigate OAuth management at the OS or Core library levels.
• Investigate methods to enhance the awareness of secure OAuth

implementation and usage.

34

IEEE MS 2014. Anchorage, AK35

Thank You.
!

!

!

!

!

!

mshehab@uncc.edu

mailto:mshehab@uncc.edu

