
A Learning-Based Approach for SELinux Policy
Optimization with Type Mining

Said Marouf
University of North Carolina at

Charlotte
smarouf@uncc.edu

Doan Minh Phuong
University of Engineering and

Technology, VNU at Hanoi
phuongdm@vnu.edu.vn

Mohamed Shehab
University of North Carolina at

Charlotte
mshehab@uncc.edu

1. INTRODUCTION
One of the major steps towards enhancing the security of
the Linux operating system was the introduction of Secu-
rity Enhanced Linux (SELinux) [1], developed by the U.S.
National Security Agency. SELinux is a kernel Linux Se-
curity Module (LSM) that adds Mandatory Access Control
(MAC) to a regular Linux system with Discretionary Access
Control (DAC) [2]. SELinux supports Type Enforcement
(TE), Role Based Access Control (RBAC), and Multi-Level
Security Levels (MLS).

In this paper we focus on SELinux type enforcement poli-
cies, in SELinux policies involve complex administration and
management [3]. The complexity comes from the high gran-
ularity provided by SELinux, such high granularity requires
administrators to keep track of all attributes that comprise
a SELinux policy, e.g. types, domains, roles, labels, etc. We
believe that reducing the number of attributes thus simpli-
fying SELinux policies, is a great step towards making ad-
ministrators’ lives easier. Within a SELinux policy, admin-
istrators define pairs of Type-Type mappings, these pairs
declare what accesses are allowed between the two types
(Note that a type on a process is called a Domain). We fo-
cus on reducing SELinux application access to minimum set
of types used by the application, hence reducing the num-
ber of Domain-Type associations within a policy. We be-
lieve this will lead to: 1)Simplifying SELinux policies, hence
help administrators keep track of all factors comprising a
SELinux policy. 2)Increasing the security of a SELinux pol-
icy by removing unnecessary Domain-Type mappings within
a policy after analyzing an application’s behavior, hence fol-
lowing the least privileged rule.
We propose a learning-based approach for monitoring an ap-
plication’s behavior through system calls. Analyzing system
call logs allows us to improve upon an application’s policy
within SELinux by investigating the actual types accessed
by the application’s domain vs. types originally requested.
Our approach is inspired by the Role Mining Problem [4],
i.e. finding the optimal User-Role and Role-Permissions set,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. CSIIRW ’10, April 21-23, Oak Ridge, Tennessee,
USA Copyright l’ 2010 ACM 978-1-4503-0017-9 ... $5.00

where in our case the goal is to find the optimal Domain-
Type and Type-Resource set.

2. SELINUX POLICIES
There has been much research has been done in investigating
SELinux policy analysis and verification [5, 6, 7, 8]. Related
to automatically generating SELinux policies, the MITRE
Corporation [9] proposed an approach that guides admin-
istrators in building new policies. Another research area is
related to simplifying SELinux policies, Yokoyama et al. [10]
suggested a framework that splits policies according to dif-
ferent phases of an application’s execution. In their work
they showed that the Apache policy can be split into three
parts each mapping to a different phase.Another interesting
area is related to verifying SELinux policies and their con-
sistency, Ahn et al. [11] introduced an approach and tool
that verifies SELinux policies and helps in detecting any po-
tentially unwanted information flow.

To our knowledge there is no learning-based approach to
simplifying SELinux policies. We believe that SELinux poli-
cies can be simplified considerably based on learning the be-
haviors of applications within SELinux. In addition we can
prevent such applications from accessing resources/processes
that they potentially will not use or need. Deciding on what
resources an application needs is based on our learning ap-
proach. The learning approach is based on monitoring the
behaviors of a particular application through the set sys-
tem calls it invokes. Because this is a learning-based ap-
proach, a policy can be modified various times according to
the changes in its behavior. We also believe the administra-
tor should have the final decision on the changes, hence we
consider recommending policy changes rather than actually
making them.

Taking a close look at Domain-Type mappings within a
SELinux policy, we notice a similarity with the Role Mining
Problem (RMP), i.e. RMP tries to optimize the User-Role
and Role-Permissions mappings, in a similar fashion one
can optimize the Domain-Type and Type-Resource map-
pings within an SELinux policy. This optimization is applied
to the Domain-Type mappings deemed necessary using our
learning-based approach.

Another issue within SELinux is that default policies espe-
cially those with unconfined types (unconfined t) are allowed
access to more resources than they will potentially ever need.
In a case like this, it is useful to learn an application’s be-

havior patterns, then deduce the set of Domain-Type map-
pings necessary for it to operate properly, and use these
mappings within a newly configured SELinux policy. This
allows for a more secure system, even in a default Targeted
mode SELinux configuration.

So, our goal behind this research is to 1)Simplify SELinux
by reducing Domain-Type mappings within an application’s
policy, 2)Adapt policies according to their actual access con-
trol needs based on a learning approach, and 3)Optimizing
the Domain-Type mappings resulting from the learning pro-
cess, based on the RMP which we call the Type Mining
Problem.

The following is an example of a SELinux allow rule. The
rule states that domain t has access to files of type type t,
with permission read file perms. Here we say the domain
domain t is mapped to the type type t.

allow domain t type t:file {read file perms}

2.1 Default Policy Behavior
SELinux can operate in two modes, Strict, and Targeted.
In Strict mode, applications are denied access by default.
Whereas in Targeted mode, by default applications are given
the unconfined t domain/type, which has full access to all
SELinux types. In Targeted mode, restrictions are enforced
only in cases where developers provide a policy for their
applications, or if an administrator explicitly writes and en-
forces a policy on a certain application. Figure 1 and 2
illustrate the process of assigning the proper type/domain
at installation and run time respectively.
Our approach focuses on enhancing the default behavior of
SELinux Targeted mode by inferring new policies. These
policies are based on learning and monitoring the behavior
of an application during run time, analyzing accesses made,
and creating an enhanced version of the default policies.

App
Installation

Predefined file context?

Any copy parameters? Use given context

Use parameter context Use parent folder context

YES

YES NO

NO

Figure 1: Type Enforcement (Installation Time)

3. OUR PROPOSED APPROACH
We define the domain to type mapping as:

Definition 1. (Domain-Type Mapping) With in a pol-
icy, when a domain dn ∈ D is allowed access to a resource
ok ∈ O of type ti ∈ T , there exists a mapping m(dn, ti) be-
tween dn and ti, where D is the set of Domains in SELinux,
O is the set of resources, and T is the set of Types.

Run App

Predefined Policy?

Targeted Mode? Use given domain

unconfined_t Deny Access

YES

YES NO

NO

Figure 2: Domain Enforcement (Run Time)

For the sake of simplicity let us consider the set of mappings
Mdn

for a single domain dn. Also consider Tdn
⊆ T which

is the set of types that domain dn is originally mapped to,
i.e. before applying any optimization. Figure 3 shows a set
of different domain and type mappings before optimization.
Notice the mapping m(dn, tm) between dn and tm, this map-
ping is a potential candidate for optimization as we will see
in subsection 3.1.

d
1

d
2

d
3

d
n

f
1

f
2

f
3

t
1

f
4

f
5

f
6

t
2

f
7

f
8

f
9

t
3

f
k

t
m

Figure 3: Domain-Type & Type-File mappings

3.1 Learning-Based Approach
Consider a domain dn, which initially has a set of mappings
Mdn

. These mappings are specified by an application’s (i.e.
its process) default SELinux policy. The matter of fact is
that an application at certain times will not need access to all
the resources allowed within its policy, hence what accesses
it needs are different from what it actually utilizes. Figure 3
shows dn is mapped to t2, t3, and tn (via the dashed lines).
Using a learning approach, we can filter out the unneces-
sary allowed accesses within an application’s policy. This
can be achieved by monitoring an application’s behavior
through system calls it makes while running. We use the
modified strace command provided by Polgen [9] which al-
lows us to record the security context (user:role:type) of re-
sources accessed via system calls, hence we know the type
associated with a certain resource. Figure 3 shows that the
application with domain dn only accessed files f6, & f8 (via
the hard lines), which means the mappings m(dn, t3), and
m(dn, t2) are the necessary mappings and there is no need
for m(dn, tm). At this point one could remove the mapping
m(dn, tm) from the application’s policy, i.e. removing the

rules associated to this mapping.
Figure 4 shows a potential new mapping set, notice for do-
main dn the type tm is removed, hence dn will have a new
domain-type mapping set M ′

dn
. We also propose to generate

new types from existing ones, these new types will be sub-
types that are associated to only the resources accessed by a
particular domain. The type t2 in Figure 3 can be sub-typed
into t′2 where t′2 does not include the file f5.

Definition 2. (Sub-Type) A type ts is a sub-type of tp if
Ots

⊆ Otp
, where Ots

is the set of resources with type ts,
and Otp

is the set of resources with type tp.

We believe the Domain-Type mappings will change at dif-
ferent times, hence we suggest an adaptable approach which
monitors applications frequently and accordingly their poli-
cies could be adjusted.

d
1

d
2

d
3

d
n

f
1

t'
1

f
4

f
6

t'
2

f
7

f
8

t'
3

Figure 4: Post Domain-Type & Type-File mappings

3.2 The Type Mining Problem
After applying the learning approach and finding the neces-
sary domain-type mappings, we end up with a set of new
sub-types T ′. To optimize this set and its mappings to
domains and resources, we refer to the Role Mining Prob-
lem (RMP) [4]. The RMP tries to optimize the User-Role
and Role-Permissions mappings, in a similar fashion one
can optimize the Domain-Type and Type-Resource map-
pings within an SELinux policy. That is, we can optimize
the Domain-SubType mappings between the domains D and
the resulting sub-types T ′. For example, in Figure 4 type t′3
could probably be merged with type t′2, given the resulting
type t2,3 does not invalidate the original accesses intended
for both t′2 and t′3. As in RMP, an optimal Role set must be
found that results in a maximum approximation to the orig-
inal User-Permissions intended. Similarly in our approach,
we must optimize the type set T ′ such that we maximize
the approximation of accesses given to domains on certain
types. We call this the Type Mining Problem.

Definition 3. (Type Mining Problem) given a u × k bi-
nary matrix A representing Domain to Resources mappings,
the Type Mining Problem is the process of finding two ma-
trices B and C, where B is a u × m matrix that represents
the Domain to Type mappings, and C is a m × k matrix
that represents the Type to Resources mappings, such that
A = B × C and m is minimal.

We also consider a more complex scenario where we look
into possible Type to Type mappings, e.g. domains that
access other domains (rather than types on resources) that
also access certain types. This will add an extra level of
mappings to explore.

4. POLICY INFERENCE
Optimizing default SELinux policies relies on the ability to
infer policy rules from the Strace logs we collect by moni-
toring an application’s behavior. The Strace logs are a col-
lection of single line traces, each trace representing a single
system call made by an application. A typical log trace
contains a system call’s name & parameters (e.g. object ac-
cessed), the security context of the application calling the
system call (specifies the domain), and the security context
of object accessed (specifies the type being accessed by the
domain), see Figure 5:

Structure:
sys_call([object ≪security_context≫], ...) =
return_value ≪domain_security_context≫

Example:
getcwd("/root/Desktop" ≪root:object_r:user_home_t:s0≫, 4096) =
14 ≪root:system_r:unconfined_t:s0-s0:c0.c1023≫

Figure 5: Log Trace Structure & Example

Inferring an optimized version of a default policy happens
through two steps:

1. Rule Filtering: Filter out unnecessary allow rules that
are not used by an application. Filtering is based on:

• The domain-type accesses extracted from the log
(e.g. <unconfined t - user home t> in Figure
5). Hence, we can compare these domain-type
pairs to the set of domain-type pairs for uncon-
fined t in the original SELinux reference policy.
We can remove allow rules that do not have a
corresponding domain-type pair.

• The domain-type actions. These are the actions
made by system calls (e.g. read, write, etc.). We
use these actions to determine what object-class
permissions are necessary within an allow rule.
object-classes represent certain objects, e.g. ”file”
is an object-class for files. For example, an appli-
cation might only need to open and read from the
object-class ”file” for type ti, in this case we can
remove any write permissions given within allow
rules for the type ti and object-class ”file”.

2. Type Optimization: Using the logs collected for a cer-
tain application, we follow the process explained in
subsection 3.2. This relies on finding the actual ob-
jects accessed via system calls. These objects can be
extracted from the system call attributes, e.g. an open
system call takes a file path as an attribute, the file at
this path is considered the accessed object.

5. CONCLUSION
Our proposed approach is based on two main techniques.
The first, learning an application’s behavior through system
calls and discovering the necessary domain-type mappings,

based on the accessed resources. This leads to a set of new
sub-types. Second, optimizing the resulting subtype sets.
We borrow from the Role Mining Problem, and map it to
our problem, which we call the Type Mining Problem. The
approach will potentially simplify policy administration, and
provide more secure policy configurations that adapt to an
application’s environment.

6. REFERENCES
[1] Security Enhanced Linux,

“http://www.nsa.gov/research/selinux, (03/10/2010).”

[2] SELinux in Ubuntu,
“https://wiki.ubuntu.com/selinux, (03/12/2010).”

[3] D. Zhang, K. Ramamohanarao, and T. Ebringer,
“Role engineering using graph optimisation,” in
SACMAT ’07: Proceedings of the 12th ACM
symposium on Access control models and technologies,
(New York, NY, USA), pp. 139–144, ACM, 2007.

[4] J. Vaidya, V. Atluri, and Q. Guo, “The role mining
problem: finding a minimal descriptive set of roles,” in
SACMAT ’07: Proceedings of the 12th ACM
symposium on Access control models and technologies,
(New York, NY, USA), pp. 175–184, ACM, 2007.

[5] G. Zhai, W. Ma, M. Tian, N. Yang, C. Liu, and
H. Yang, “Design and implementation of a tool for
analyzing selinux secure policy,” in ICIS ’09:
Proceedings of the 2nd International Conference on
Interaction Sciences, (New York, NY, USA),
pp. 446–451, ACM, 2009.

[6] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and
P. McDaniel, “A logical specification and analysis for
selinux mls policy,” in SACMAT ’07: Proceedings of
the 12th ACM symposium on Access control models
and technologies, (New York, NY, USA), pp. 91–100,
ACM, 2007.

[7] B. Sarna-Starosta and S. D. Stoller, “Policy analysis
for security-enhanced linux,” in Proceedings of the
2004 Workshop on Issues in the Theory of Security
(WITS), pp. 1–12, April 2004. Available at
http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

[8] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing
integrity protection in the selinux example policy,” in
SSYM’03: Proceedings of the 12th conference on
USENIX Security Symposium, (Berkeley, CA, USA),
pp. 5–5, USENIX Association, 2003.

[9] The MITRE Corporation, “Polgen: Guided auto-
mated policy development. url
http://www.mitre.org/tech/selinux, (03/05/2010).”

[10] T. Yokoyama, M. Hanaoka, M. Shimamura, and
K. Kono, “Simplifying security policy descriptions for
internet servers in secure operating systems,” in SAC
’09: Proceedings of the 2009 ACM symposium on
Applied Computing, (New York, NY, USA),
pp. 326–333, ACM, 2009.

[11] G.-J. Ahn, W. Xu, and X. Zhang, “Systematic policy
analysis for high-assurance services in selinux,” in
POLICY ’08: Proceedings of the 2008 IEEE Workshop
on Policies for Distributed Systems and Networks,
(Washington, DC, USA), pp. 3–10, IEEE Computer
Society, 2008.

