
Maintaining User Interface Integrity on Android

Abeer AlJarrah
College of Computing & Informatics

University of North Carolina at Charlotte

Charlotte, North Carolina 28223

Email: aaljarra@uncc.edu

Mohamed Shehab
College of Computing & Informatics

University of North Carolina at Charlotte

Charlotte, North Carolina 28223

Email: mshehab@uncc.edu

Abstract—The demand of having a multi-window and multi-
tasking option in Android devices has been an emerging topic
among Android users, especially with the trends toward larger
hand-held screen sizes. One option to meet this demand, is to
use floating windows. This feature enables users to perform
more than one task at the same time while sharing the same
screen. Device screens can be divided into multiple windows that
can have different visual features in terms of size, location and
transparency. While this feature addresses user complaints about
Android on large screen devices, attention must be given to the
security implications of such an option.
In this work, we demonstrate how the current implementation of
floating windows on Android can be abused to compromise user
interface integrity through several attacks such as tapjacking,
event eavesdropping and eventhijacking.
Although previous versions of Android have evolved to handle
the issue of eventhijacking enabled by Toasts, recent versions
fail to address security concerns related to floating windows.
We propose and describe two approaches, an application level
and a system level, to enable secure apps against possible
malicious floating windows. The application level approach aims
to detect existence and location of floating windows on top of
an app. System level approach not only detects their existence,
but also extends the system to include an event handler that
notifies apps when floating windows are rendered over the apps’
secure regions. We implemented our proposed approaches and
performed experiments to evaluate their efficiency.

I. INTRODUCTION

Floating Apps, floating windows or floating views are all

terms that interchangeably refer to apps with the ability of

having more than one active application window running on

the mobile display screen. They are advertised as “cool” apps

that have one or more windows floating over other running

applications allowing real-time multitasking behavior. Users

can enjoy the desktop-like experience on their mobiles, since

they can move, re-size, maximize and minimize windows of

running apps. Users can also pin installed applications into

floating views, enjoying multitasking and fully utilizing the

whole screen. These windows are basically views which do not

occupy the whole screen yet provide complete functionality

such as playing music or chatting with friends. Users can

have one or more active windows on the screen while still

being able to interact with home screen or a background app.

Floating windows are shipped to the market in many forms.

They can be found in custom ROMs (Read-Only Memories)

such as Paranoid [1], or packaged as a feature of a framework

that needs root access such as Xposed Framework [2], or

simply through libraries that neither require installing a custom

ROM nor root access, such as StandOut library [3]. This is an

attractive feature for users who have large screen smartphones

and tablets. Fig. 1 shows a screenshot of one of the floating

apps from Google Play.

Fig. 1: Floating Views apps [4]

Although having floating views or windows provide

multitasking functionality, it comes with potential security

implications. For example, a floating window may attempt

to steal input intended for background app or forge user’s

intent to interact with it by tricking the user. Furthermore,

it is possible to have floating windows that are stealthily

overlaying critical input fields or action items on the

background app. These threats are collectively referred to

User Interface Redressing (UI Redressing), which basically

involves tricking the user into interacting with the UI element

that is different than the intended one. UI Redressing has

been investigated in the web context, where <iframe> or

<div> can be used as an overlay. Many attacks and solutions

were investigated in that context [5] [6] [7] [8] [9]. However,

this paper is the first to discuss the UI overlay security on the

context of floating views in a native mobile platform.

The Android Security model has evolved over time to address

similar security threats. One example is View class XML

attribute android:filterTouchesWhenObscured and

methodsetFilterTouchesWhenObscured(boolean).

, which were added to Android versions 2.3 and above. The

purpose was to specify whether to filter touches when the

view’s window is obscured by another visible window.

This was in light of the security bug reported exploiting

the TapJacking vulnerability enabled by Toasts [10] [11]

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.150

449

[12]. Toasts, unlike other view types, pass touch events

to underlying views which can be abused maliciously.

Adding these attributes to the View class helped prevent a

considerable attack vector. Nevertheless, threats posed by

overlays of window types other than Toasts are still a

possible vulnerability. In fact, compromising smartphone

display in general may have serious implications that are

not applicable to web-based applications or desktops. For

example through compromising UI on mobile devices, it is

possible to infer where users tap and what they type on a

smartphone display or tablet display based on sensors data

such as accelerometer, gyroscope readings or orientation

sensors [13] [14]. Today’s system developers who wish to

protect their apps against threats introduced by a floating

window have no systematic support from the platform

where they can define a custom behavior to protects user’s

data. In this paper, we propose two approaches to handle

floating windows. We extend the implementation of Android

4.4 (KitKat) to add the functionality of defining a custom

behavior in case the app was drawn under a floating window.

We also, propose an application level approach to help detect

malicious overlays without the need of changing Android

core. This paper is organized as follows: Section II discusses

previous and related work. Then, Section III presents the

threat model in light of the current platform implementation.

Section IV provides background information by illustrating

how Android manages UI and how overlays are designed and

used. Section V presents the proposed approaches to help

countermeasure possible attacks. Lastly, we provide some

concluding remarks in Section VI.

II. LITERATURE REVIEW

Attacks targeting UI were extensively studied in web con-

text; terms like clickjacking and UI Redressing were initially

addressed as pure web-based terminology. These attacks’

viability were studied later in native OS context in terms

of how they can be mounted, consequences and possible

countermeasures. We will briefly shed light on related work

of UI Attacks in different contexts.

General Web-based UI Attacks In 2008, Clickjacking was

first introduced [15] as an attack that compromises browsers’

user interface integrity by utilizing <iframe> to hold a page

of interest to the attacker then place it over a page that the

user actually sees, luring the user to click on a link that will

actually be received by the framed page. Extensive research

has been conducted to solve this problem. Frame busting,

which is simply JavaScript code that pulls the current layer

into the top, is one the first techniques introduced to solve this

issue. However, studies [5] showed browsers at that time can

be easily circumvented even with frame busting code. HTTP

Headers like X-FRAME-OPTIONS option were introduced

to give developers options to either prevent browsers from

rendering iframes or check if it is loaded from the same

origin. Other solution was to simply use no script , which

means that browsers will not render any Javascript. Another

solutions suggested on the client side rather than server side

were presented in the form of browser extensions [8] [16].

These basically used clickjacking attack attributes like visi-

bility. Counter actions by these plugins ranged from blocking

Javascript, randomizing UI or simply warning the user. To

overcome limitations of server and client side solutions and

address more complex attacks, proxy-level framework [7] was

designed to check for symptoms of clickjacking attacks by

analyzing requests and response pages and removing malicious

attack payloads to safeguard end users. In 2012, Huang

et al [6] revisited existing clickjacking defense mechanisms

and showed that they are not sufficient. They designed new

clickjacking techniques based on existing ones and devised

InContext defense mechanism. In their study, they explained

that the root cause of clickjacking is that malicious applica-

tions appear as out of context UI elements to the user, which

makes the user act out of context as well. To keep user actions

in context, they advised that websites should mark their critical

UI elements and then let browsers enforce context integrity of

user actions on the sensitive UI elements. This approach works

by enforcing visual and temporal integrity. Visual integrity can

be achieved through guaranteeing target display integrity and

pointer integrity. Temporal integrity, which focuses on giving

the user enough time to conceive her action’s consequences,

can be achieved through methods of UI delay. UI delay after

pointer entry padding area around critical elements and pointer

re-entry on newly visible sensitive element.

In their work [9] Akhawe at al., not only shed light on how

human perception limitations relate to click-jacking attacks,

they have also developed attack vectors that use these limi-

tations existing defense mechanisms fail to circumvent. They

have also stressed that badly designed usability is the main

reason why most of the existing defense mechanisms are not

widely adopted. Not to mention that they also fail to address

equivalent threats on touch-based devices.

Mobile Web-based UI Attacks Rydstedt et al. studied fram-

ing attacks’ viability on the various browsers of smartphones

[17], and their findings showed that not only most mobile

websites do not implement proper busting but also smartphone

specific features like iPhone zooming, sharing screen real-

estate with the browser and others can be easily abused to

form what they called “tap-jacking” attack.

In their effort to explain how smartphone webviews specifi-

cally are vulnerable, Lou at al. [12] acertain that WebViews

APIs can be abused by malicious developers to mount what

they referred to as a “touchjacking attacks”. They have ex-

plained how the UI APIs can help attackers control WebView

position, events , display and layout.

Android specific UI Attacks The fact that Toasts allow

touch gestures to be passed to beneath surfaces has been

discussed as one of the first vulnerabilities that can be used

to mount touch-jacking attacks [18]. The attack basically

depends on displaying to what appear as a benign notifi-

cation (Toast) in the foreground while there is a running

malicious application in the background. Android versions

after 2.3 provided a capability protection mechanism using

android:setFilterTouchWhenObscured() or alter-

450

natively android:filterTouchWhenObscured; how-

ever, these properties are available for versions after 2.3,

not to mention that they are not enabled by default. Later

work by Niemietz and Schwenk [11] demonstrated what they

refer to as “browser-less” tapjacking attacks using transparent

action UI items such as Buttons added above a victim app

using WindowManager. Several attack permutations based

on this concept can compromise critical applications such as

contacts, native browser, touch gesture logging, premium calls

and installing applications in background without user consent.

The work suggested a theoretical solution which basically

relies on instantiating a layer (Tapjacking Security Layer or

TSL) beneath the application. This layer instantiates once

the app is launched so that it blocks all the touch gestures

from reaching any further. TSL should remain open until the

application closes. Although this work [19] does not address

clickjacking explicitly, it highlights a flaw in Android design

that can leak UI state information through their discovered

side channel. An attacker first builds a UI state machine

based on UI state signatures constructed offline, and then

infers UI states in real time from an unprivileged background

app. To circumvent this issue, several defense mechanisms

were suggested, such as having more strict access control

on memory files and change the way WindowManager buffer

windows.

In the context of using UI to detect malicious behavior, Huang

et al, [20] proposed to define a malicious behavior as a

mismatch between UI and app behavior. They extracted UI

elements texts and compared connotations behind captured text

to the functions or APIs being called.

In the context of securing embedded UI on Android, Roes-

ner & Kohno [21] have redesigned Android to support

secure embedded interfaces on both OS and web based

context (LayerCake). LayerCake contains two main addi-

tions, EmbeddedActivityView and SecureWebview.

EmbeddedActivitView extends Android activity class to

securely host embedded UI components such that each embed-

ded view resides on a separate window that overlays the main

window (parent activity) on a nested manner. This separation

of windows prevents attacks like parent eavesdropping, DoS

or clickjacking on child windows, and also prevent child view

from manipulating parent UI. LayerCake supportes clickjack-

ing prevention by allowing embedded activity to block user

input if the activity is covered by a Toast, doesn’t have

minimum required size or is not fully visible.

LayerCake also implementes SecureWeView, which is an

activity that contains a web view but each one resides on a

separate window. When SecureWebView is embedded in

another activity, the internal web view takes the dimensions

of the hosting activity. Because of the separation of parent

and child into two activities, i.e. two processes, it is no longer

possible to eavesdrop input, extract input, issue events or

manipulate size, transparency or location.

To our best knowledge, security implications using floating

windows have not been discussed by any previous work. Our

work is a first step towards understanding the risk associated

Fig. 2: Layout for transparent window

with such feature.

III. SECURITY AND THREAT MODEL

Floating view or window can be displayed by instantiating

an instance of FrameLayout which is a descendant of the

class ViewGroup. The instance can inflate a static XML

layout through a View object. Opacity can be controlled by

XML view attributes. See Fig. 2, which shows a layout for a

transparent window that have two input fields which can be

used to cover login controls. WindowManager can be used

to add/ remove instances of windows through the methods

addView() and removeView().

The main risk associated with having overlays is when they

take control over the display screen on the phone surrepti-

tiously. Malicious apps may target specific critical apps on the

victim’s device displaying invisible overlays that are designed

specifically for the UIs of targeted apps and seamlessly display

overlays that mask certain areas of the targeted UI. This can be

implemented using a Service, which will be responsible of

monitoring running apps and displaying the overlay windows

accordingly. The overlay windows can appear once and then

disappear after performing a malicious act such as stealing

critical user input. Malicious developers might decide to

destroy the invisible window in order to minimize effect on

normal app behavior, thus minimizing user attention to any

unusual behavior. There are many ways to compromise apps’

security by hacking the display screen. Fig. 3 shows different

attacks on an app UI. For the sake of randomization, we use

XYZ bank app in Fig. 3a as an example of a victim app.

User Input Theft: This attack uses a transparent overlay to

steal user credentials, while deceiving the user into believing

that a legitimate UI input field received it. In fact, this opens

the door for different permutations of well-known user input

theft attacks such as user credentials theft as shown in Fig.

3b. Customized overlays can be aligned perfectly to the user

input fields, preserving all the visual properties of the screen

so that they seamlessly overlay the critical input fields. The

user will enter her credentials into the input fields thinking

that she is interacting with the app UI elements while the

top transparent overlay receives the input. The attacker can

know when the user hit the login button by overlaying the

451

2:30

XYZ Bank
Account Access

Login

User Name

Password

Remember Me

Password

User Name

(a) Victim App

2:30

XYZ Bank
Account Access

Login

Remember Me

Loginoging

Password

User Name

(b) User Credentials Theft

2:30

XYZ Bank
Account Access

LoginLoginLoginLoginLogin

User Name

Password

Password

User Name

ATM PIN

ATM PIN

(c) Field Display Injection

2:30

XYZ Bank
Account Access

Login

User Name

Password

Remember Me

Password

User Name

LoginLoging

(d) Touchjacking

2:30

XYZ Bank
Account Access

Login

User Name

Password

Remember Me

Password

User Name

XYXYXYXYZ ZZ Z BaBaBaBanknknknk
AccouAccouAccount Acnt Acnt Accesscesscess

LoginoginLoginogin

User NUser NUser Nameameame

PasswoPassworrdrd

RememRememRemember Mber Mber Meee

PPasswPasswPasswordordordrd

User UseUser es NameNameNamemame

(e) Denial Of Service Attack

Fig. 3: Possible Overlay Attacks

button. This will help the attacker displaying some message

to the user to enter the credentials again. After stealing user

input, the attacker may hide the overlay windows. This will

not raise any concerns at the user’s end since she will think

she mistyped the input fields and login again as usual.

Fields Injection: Floating overlays can also steal other kinds

of sensitive data from the user. This can be done by displaying

a floating window that contains additional input fields request-

ing the user to fill in order to login. This fake input field

on the top of a victim’s login screen will trick the user into

divulging sensitive data such as ATM PIN or a SSN. Fig. 3c

shows an example of a compromised app used to trick the

user to input their ATM PIN. This attack is analogous to code

injection attacks (XSS) in the sense of manipulating UI by

adding illegitimate input fields. In XSS case, the HTML DOM

variable is manipulated by script injection [22].

Clickjacking Attack: Clickjacking is a malicious approach

that aims to deceive users, clicking something different from

what they observe. This can be achieved through floating

overlays by having transparent views floating on the top of any

clickable item on the victim screen, see Fig. 3d. A transparent

overlay can be positioned on the top of clickable items in the

app UI. The windows are approximately positioned to cover

the action item on the victim app. When the user clicks on

login button thinking she is accessing her account, she actually

clicked on the malicious overlay which can result in starting

any undesired action such as sending data to remote server.

Denial Of Service Attack (DoS): It is possible for a run-

ning service to create an overlay spanning the entire screen,

preventing any user input from going through (see Fig. 3e).

When the developer (or attacker) chooses to start the service

at boot time, this effectively constitutes a DoS, since the layer

will obstruct the interaction with the app.

Although floating overlays are considered important for en-

abling user to have more than one app running in the

foreground simultaneously, it still raises many security con-

cerns, as described earlier. Furthermore, when they are used

and shipped to the market, there is no precise explanation

to the user about their usage and purpose. Using floating

windows requires a single android permission (SYSTEM-
_ALERT_WINDOW), which is usually presented to the user

under the ‘Other’ permissions category or at best using vague

description such as “permission to draw over other apps ”,

which makes it easy to be neglected by the user.

Given their rising popularity in many useful and popular apps,

it is not practical to disable floating windows altogether. Still,

the platform should at least provide a mechanism by which

the developer can define custom actions to protect the user in

case there was a floating overlay covering the app window.

IV. BACKGROUND

The issue addressed in this work is directly related to

Android User Interface. This section is dedicated to illustrating

the mechanics behind Android UI management process. The

section starts by defining the terms that will be used to explain

UI display management. Then we will discuss the UI display

management in Android and will explain what are floating

windows and how they can be used by developers.

A. Glossary

An Activity is one of the main components of an Android

app. An activity represents an app screen and hosts the

logic and interface for this screen. Most activities occupy the

whole screen display.An application may contain one or more

activities. Activities get stacked according to user actions,

where each pile of activities that belongs to one app is called

task [23]. As a user navigates through the activity, it passes

through four states [24]. Active or Running is when the activity

starts and appears in the foreground and receives input focus.

When the activity is partially covered by any visual component

such as an alert dialogue it gets Paused, which is the second

state. This is where the activity is not the main user input

focus. When the activity is fully covered by another activity

it Stops which means that user input focus is transferred to

another activity. Lastly, an activity gets Killed or Dropped
when the instance doesn’t exist in the memory anymore. The

Activity Manager, is one of the main services in Android

452

application framework. Its main task is to manage all activities

running on the system. This includes managing communica-

tion between the activities and other services, broadcasting

intents and managing activities states. The Surface is an object

holding pixels that are being composited into the screen or

simply a drawing buffer. Each window you see on the screen (a

dialog, full-screen activity, the status bar) has its own surface

that it draws on, and Surface Flinger renders these to the final

display in their correct Z-order. The Window in Android is

analogous to a window on the desktop. Each Window has

a single Surface in which the contents of the window is

rendered. An application interacts with the Window Manager
to create windows; the Window Manager creates a Surface for

each window and gives it to the application for drawing. The

application can draw UI design in the Surface; to the Window
Manager it is just an opaque rectangle. This rectangle has

a single view hierarchy. The Window Manager, is a system

service, which is responsible for many functions including:

managing the Z-ordered list of windows, which windows are

visible and how they are laid out on screen, managing input

method window, and managing wallpaper window. Among

other things, the Window Manager automatically performs

window transitions and animations when opening or closing an

app or rotating the screen. So, at any point in time, the Window
Manager is responsible for managing multiple windows on

the screen. For example, the method relayoutWindow()
in class WindowManager is called whenever there is any

change to the screen display (i.e. add window, re-size window,

move window). The Window Manager includes the APIs that

enable a floating window that does not occupy the whole

screen to be added to an activity [25]. In Android there are 23

different types of windows, see Fig. 4, which shows the most

common ones. Each type is used for a specific task and has

its own properties. One of the properties that distinguishes

window types is the priority in the Z-index of the display

screen which decides which window gets focused and thus

receives user input.

2:30

XYZ Bank
Account Access

Login

User Name

Password

Remember Me

Password

User NameActivity Window

Status Bar Window

Input Method Window

Sub Window

Popup
Additional info

Cancel Confirm

Fig. 4: Android Windows

A View is an interactive UI element inside of a window.

The Button and TextView are examples of Views. Views

are organized in a hierarchy to represent an app’s layout. A

window has a single view hierarchy attached to it, which

provides all of the behavior of the window. Whenever the

window needs to be redrawn (such as when a view has

been invalidated), this is done into the window’s Surface.

The Surface is locked, which returns a Canvas that can be

used to draw into it. A draw traversal is done down the

hierarchy, handing the Canvas down for each view to draw

its part of the UI. Once completed, the Surface is unlocked

and posted so that the drawn buffer is swapped to the fore-

ground to then be composed on the screen by Surface Flinger.

View is responsible for managing focus and key events. The

ViewRoot is the top of a view hierarchy, implementing the

needed protocol between View and the Window Manager. The

ViewRoot.performTraversals() method is responsi-

ble for drawing the Activity’s view hierarchy into ViewRoot’s

offscreen surface. This function always executes inside of

the UI thread’s context. It is called every time a widget or

layout manager calls its invalidate or requestLayout methods.

ViewRoot is also responsible for managing, collecting and

dispatching user input.

B. Android UI Display Management

Activity creation and layout management spans different

layers and requires communication between different pro-

cesses. Fig. 5 demonstrates the sequence of handling different

processes invocations and their communication in order to

display an activity. Assume Activity Manager and Window

Manager run in Process A, App runs on Process B and

Surface Flinger runs in Process C. When a new Activity

is launched (user started an app activity), Activity Manager

requests corrsponding activity thread in Process B to call

series of functions that lead to creating the ViewRoot of

the activity and then add a new window for that activ-

ity. The newly created window is then registered in the

Window Manager. The ViewRoot also calls the Activity’s

relayoutWindow method which then calls WindowMan-

ager’s relayoutWindow method which fetches the surface

created by Window Manager Service into app process (Process

B). The Window Manager also creates WindowState which

holds display information about this particular window. The

ViewRoot then, calls the performTraversals() method

which will call the Surface.lockCanvas() method in

SurfaceFlinger (Process C). This method is responsible

for mapping the raw surface memory into the app’s process

(Process B). Communication between different processes is

done using handlers and Binders IPC, tokens and flags are

used to distinguish corresponding instances.

Different Activities may have one or more windows. Activ-

ities are stacked in the Activity Manager service. Furthermore,

each Activity process corresponds to ActivityRecord ob-

ject. Similarly, Windows are stacked in Window Manager ser-

vice where every window is represented as a WindowState.

There are different Window types, depending on the con-

453

Process A

Activity Manager

Process B

App

Process A

Window Manager

Process C

Surface Flinger

ViewRoot

ViewGroup View

Layout

PhoneWindow
$DecoreView
FrameLayout

ViewView

1 2

3 4

Fig. 5: Android UI Management Walk-through

tent and the purpose of the window, i.e. application activity

window is different than the input method window or the

wallpaper window. An Activity module may contain one or

more windows, for instance if the activity shows a start-up

window, or displays a pop-up dialogue, it will create a sub-

window that belongs to the outer window. These windows

all share the same AppWindowToken. As shown in Fig. 6,

in WindowManager service, each activity record object corre-

sponds to an AppWindowToken object. AppWindowToken
extends WindowToken, which is a special type of Binder

token that the WindowManager uses to uniquely identify a

window in the system. Window tokens are primary security

mechanism implemented to prevent malicious applications

from drawing on top of the windows of other applications

and share the same Window Token. The WindowManager

protects against this by requiring applications to pass their

application’s WindowToken as part of each request to add or

remove a window. If the new window token and the application

token don’t match, the WindowManager rejects the request and

throws a BadTokenException. Without window tokens, this

necessary identification step wouldn’t be possible and the Win-

dowManager wouldn’t be able to provide such app isolation.

The AppWindowToken also enables the ActivityManager to

make direct requests to the WindowManager. For example,

Activity Manager can request hiding all windows that belong

to a specific WindowToken. WindowManager, in turn, will be

able to correctly identify the set of windows which should be

closed [26].

Fig. 6 shows that the Activity corresponding to Activity
Record -3 is the current system “active” activity window

since WindowState-E is the top most one. ActivityRecord-1

has three window states, WindowState-A, WindowState-B and

sub-window WindowState-B-1. Binders for Input method and

Wallpaper corresponds to Tokens and have their own windows

as well. Windows are stacked according to their Z-access

position in the display screen from lowest to highest.

At any point, a screen may contain multiple app windows.

At run-time, the Window Manager assigns app windows pri-

ority values ranging from FIRST_APPLICATION_WINDOW

Activity Manager Window Manager

Activities Stack Windows StackToken List

ActivityRecord - 1

ActivityRecord - 2

ActivityRecord - 3

Binder for
WallPaper

Binder for
InputMethod

AppWindowToken - 1

AppWindowToken - 2

AppWindowToken - 3

WindowToken - W

WindowToken - I

WindowState - A

WindowState - B

WindowState - B-1

WindowState - C

WindowState - D

WindowState - W

WindowState - E

WindowState - I

Zmin

Zmax

Input Method
Manager

&
Wallpaper Manager

Fig. 6: Android Activities/ Windows organization

Status Bar

Key Guard

Toast

Floating Window i.e.
 (TYPE_SYSTEM_ALERT,

PHONE_TYPE)

Application Window(s) (1- 99)

Launcher

Wallpaper Low priority

High priority

Fig. 7: Window Types Priority

to LAST_APPLICATION_WINDOW, with values of 1 to 99

respectively. This helps the Window Manager determine in

which layer these windows should be displayed. Hence, de-

termines which window will have priority receiving user input.

Z-order or layer position, determines which window receives

user input from a set of windows of the same window type.

For different window types, there are rules that hold that

determines in which layer the window should be drawn, and

the priority order in which they will receive user input.

Fig. 7 shows a subset of the window types in android

and how they relate to each other in regard of the prior-

ity to receive user input. Note that Floating Window types

(TYPE SYSTEM ALERT, PHONE TYPE) have higher pri-

ority over application windows. This means that regardless

of the time of window creation, floating windows will have

higher Z-index, i.e. a higher layer than any window of type

Application Window, thus, they have higher priority to receive

user input first.

454

C. Floating Windows in Android

Creating a floating window and maintaining its pres-

ence can be done by implementing a service and then

inflating a view on the screen. To add a view to the

screen, developer can call WindowManager.addView()
and specify PHONE_TYPE or TYPE_SYSTEM_ALERT as a

WindowManager.LayoutParameter which determines

the window type. These types are designed to flow on top

of other application windows for the purpose of supporting

system-level interaction with the user, but developers use them

in their apps to get “floating containers” for their views. Lay-

outs can be designed to include widgets and a complete logic

can be implemented for these widgets event handlers. This

means that these floating windows can provide functionality

similar to using regular activity. Floating windows also provide

a visible interactive app that doesn’t occupy the whole screen.

V. PROPOSED SOLUTION

The presented attack scenarios have assumed a transparent

window, which means that the user is tricked because she can

not see the actual surface that is receiving her input. Both of

the following mitigation approaches merge in the direction of

detecting if there exist an invisible floating window; hence,

notify the user to take proper action.

A. Application level: Window Punching

Each Android component can be either public or private.

Public components can interact with other components,

but private components can only interact with those that

are part of the same app (or one that runs with the same

UID) [27]. In this multi-component system, security is

maintained through a combination of uid-based permissions

and binder capabilities. For permissions, every incoming

binder transaction has associated with it the uid of the initator

that is allowed to access a specific feature [28]. Otherwise,

i.e. if initiator have a UID different than the component,

security exception will be triggered by the OS. Based on that,

and given that potential malicious floating views app and

victim app are two separate applications with two different

UIDs. This approach is based on injecting touch events

(punches) on the current activity which, in turn should receive

all the touch events, otherwise, it would imply a floating

window on the top of the running app. We have developed a

SecureActivity that extends the class Activity. This

activity have a layout file that consists of one View instance

covering the entire activity to act like a cover. Also, the

extended activity has method checkSecure() which will

switch layouts between the regular layout of the app, and the

cover layout that spans the whole activity, see Fig. 8. Then a

sequence of touch events is fired programmatically trying to

collide with a floating window in a process we call Window
Punching(Fig.9). Ideally, the cover view should receive all the

punches (touches). Unless, there exist a floating window on

the top of it, then, the OS will fire SecurityException:
Injecting to another application requires
INJECT_EVENTS_PERMISSION.

Secure Activty
Layout

Relative LayoutTabular Layout

 View (Activity
Cover)

Table Row Table Row

TextView EditView TextView EditView

checkSecure(...)

Fig. 8: Switch to cover View

2:302:302:30

(a) Whole Screen Punching

2:30

XYZ Bank
Account Access

Login

User Name

Password

Remember Me

Password

User Name

PasswordP d

User NameU r N me

Login

(b) Selective Punching

Fig. 9: Window Punching

Punching techniques may vary in terms of location and order

of punching. Whole screen punching as shown in Fig.9a

punches the whole display screen. In that case the function

checkSecure(int n) creates a mesh of size (n × n)
,where n is a parameter passed by the user. The mesh virtually

helps decide the touch position, it contains cells where clicks

are fired into. The parameter helps the user set the accuracy

level of the punching. Hence, increasing n means increasing

the number of punches, thus, the possibility of catching small

invisible floating windows. As the parameter n indicates how

many windows the screen will be divided into. It also implies

the region size that will not receive punches, see the red

window in Fig.9a. If floating window falls inside the red

window, it will not be discovered.

The order of punching may have variant permutations,

row-by-row , column-by-column, diagonally or simply

randomly. The developer may prefer to perform punching

on critical regions rather than the whole screen. Input fields

and action items such as Buttons are most likely to be

covered by an invisible window. Thus, developer may pass

the location and dimensions of critical UI regions information

to checkSecure(Dimensions[], int n) to perform

Selective Punching as shown in Fig.9b. The first parameter

is an array of critical regions dimensions and the second

parameter is the mesh size or the accuracy of punching.

This approach can also be used to approximate the position

455

Fig. 10: Window punching performance

of the overlay through detecting the region that didn’t receive

the touch event(s).

To inject touch events, we have used a public API

that requires no special permissions or rooting, called

Instrumentation [29], which is used Android

Automated Testing platforms such as Robotium [30].

This API can send pointer touch events using the method

sendPointerSync(). The cover view, on the other hand,

handles the touch events by logging the coordinates of the

touches relative to the application window. This approach is

similar to the Automated Clickjacking detection on web-pages

proposed by Balduzzi et al. [8]. Their approach consisted of

two units, detection and testing. The first unit was responsible

for logging and detecting UI elements overlaying each other,

while the second unit performed clicking and scrolling

programmatically to check all clickable UI elements on

HTML pages.

Performance Testing As discussed earlier, punching can be

performed on the whole screen or on selective parts where

critical action items reside. In this experiment, performance

will be measured by extensively punching the whole screen

in different orders, Row-by-Row, Column-by-Column and

Diagonally. In order to see how this approach is adding

overhead, we performed series of testing with varying mesh

sizes. Fig. 10 shows execution time needed using different

mesh sizes (2x2) to (40x40). The method checkSecure()
contains all the heavy work of view injection and clicking

all over the cover view. Touch event injection is done using

multiple child threads managed by a Threadpool of size

10. Average time difference between the first and last touch

event is recorded for different mesh sizes. Results show that

the order of the punching does not affect the performance as

the three lines are aligned for different mesh sizes. Overhead

time varies between 1 millisecond up to ≈ 2 seconds for a

40x40 mesh size. This can be attributed to the accumulative

waiting time in the Threadpool itself or the event queue.

Thus, selective punching is recommended in this case as it

will not require as many clicks to scan critical UI regions as

whole screen punching would need. GenyMotion emulator

[31] was used for testing with API 22. The emulator is set

on 1 processor, 1024 MB Base Memory.

B. System level: Introducing OnOverlap Event

Currently, an activity can not know if its display is being

covered by floating window. Thus, there is no action can

be taken by the activity to either protect input fields or at

least warn users of possible fraud. This approach requires

modification of Android platform; thus, we have modified

Android API 19 (Kitkat) as an example to enable detection

of overlays. The modified version enables listening to a new

event OnOverlap which will fire when a window of type

SYSTEM ALERT WINDOW or TYPE PHONE is overlap-

ping an activity window. This enables developers to define

custom behavior such as alerting the user or dimming the

screen to prevent input of critical or sensitive data. The set of

OK

Activity

Activity.SetWindowSecure()

1
Activity

Manager
Service

Activity Pass app token and secure flag to AM
2

Window
Manager
Service

AM passes app window token to WM
3

WM marks the window as secure window

4

ActivityActivity

Window
Manager
Service

Activity
Manager
Service

floating window is created

1 WM relayoutWindow () --> detectOverlap()

2

pass window position and size
3

fire OnOverlap event hander

4

Activity

Event handler fired

Step1: Mark

Step2: Detect

Step3: Handle

Security Alert !
void onOverlap(int x, int y, int height, int width){
 notify_users();
 disable_clicks();
}

Fig. 11: Flow of handling floating windows in proposed

framework

changes we have added can be categorized into three stages:

Marking, Detecting and Handling. See Fig. 11.

Mark Secure Window: By default activities are not sensitive

to overlays. We provide an approach for the developer to

specify secure activities that react to overlays. Developer

needs to call the new method setSecureWindow added

to Activity class. ActivityManager service receives

this change and passes it to WindowManager which now

can recognize the window of the secure activity. Many classes

have been modified to be able to represent and pass this

flag including Activity class and AppWindowToken in

WindowManager.

456

Detect Floating Window: It is essential to check for floating

windows whenever a new window is added. In the class

WindowManager the method relayoutWindow is called

whenever a window is created, re-sized or redrawn. The func-

tion detectOverlap() is called only when two conditions

hold: There are one or more application activity window

drawn and there exists a window of type PHONE TYPE

or SYSTEM WINDOW TYPE. This function is to check

if there is any floating window above a marked activity

window. The algorithm used to detect overlapping windows

Result: Fire OnOverlap if detected

for All displayed windows on the screen do
if secure window is found then

for All windows on the top of secure window do
Check window type;

if TYPE SYSTEM ALERT or PHONE TYPE
is found then

Fire OnOverlap event in the Activity

displayed in secure window;

Exit routine ;

end
end

end
end

Algorithm 1: Detect Overlap algorithm

can be summarized in Algorithm 1. If there was a floating

window detected the method sends a message to the event

queue containing the position of the floating window and its

height and width. Event queue, send that using Handler to

Activity Manager service which identifies the corresponding

app through AppWindowToken, Activity thread fires the

OnOverlap event of the activity. At this stage, we have also

added code to draw a red frame around the detected window

to enable the user to see it.

Handle Floating Window: This simulates the OnClick
event handler. The OnOverlap handler returns not only

if there is an overlap with another window, it also returns

information about the window size and location (see Fig.

12). This can be used by the developer to highlight the

void onOverlap(int x, int y, int height, int width){
 notify_users();
 disable_clicks();
}

Fig. 12: OnOverlap Event Handler

window borders, so that if floating windows are invisible ,

they method draws a line around them to visualize it to the

user. Developers can also notify users by displaying an explicit

message warning her not to enter her information. This will

help ensure visual integrity and protect user data.

All these changes needed were done in one layer of

Android; the Application Framework Layer in Android Ar-

chitecture. We have modified 6 java classes related to the

following components: Window Manager, Activity Manager

and Activity adding extra ≈120 lines of code. Classes

modified were: WindowManager, ActivityManager,

Activity, ActivityRecord, ActivityInfo, and

ActivityThread. The modified SDK can be accessed

upon request. We have also created a patch file for the stock

version of Android (Kitkat). Applying the patch file will

modify stock version source code so that the new version

reacts to overlays the way explained in this section.

Performance Evaluation We have recorded 700+ time

stamps to measure execution time for detectOverlap
having varying number of floating windows. Fig.13 shows the

absolute execution time ranges from 1.48 ms for detecting

one window to ≈ 3 ms needed to detect 10 floating windows,

averaging of 2.7 ms. The routine detectOverlap is called

in the function relayoutWindow that belongs to the class

WindowManager. The call to the outer function is done

when ever there is a need to redraw the screen , i.e. a window is

added, removed or moved. So to measure how much overhead

the function detectOverlap is adding to the original

function, we have conducted several experiments. In each one

there was a specific number of windows floating. We have

monitored the time needed by the outer function (Δ1) and the

time needed by the inner function (Δ2). The relative overhead

added by the inner function is computed by: Δ2/ Δ1 * 100%

which represents a percentage. Fig.14 shows that execution

time of the function OnOverlap() was negligible compared

to the outer function relayoutWindow() as the ratio of

inner function to outer function averages 1.7%, ranging from

1.3% to 2.28%. In every experiment, approximately 700+

Fig. 13: detectOverlap Execution Time

time readings were recorded and averaged. The experiment

was conducted on the built-in emulator of the modified version

of Android Kitkat 4.4 . The emulator runs on memory of 512

MB, 200 MB internal storage and 64 MB VM Heap memory.

VI. DISCUSSION & CONCLUSION

We have considered security implications of using floating

windows on Android. While this feature is advertised as a

“cool” feature, current Android implementation fails to support

457

Fig. 14: Relative Execution Overhead

securing apps against malicious floating windows. We thus

have modified Android OS to fire an event on the system level

if floating window is detected. The resulting system enables

developers to define custom behavior to deal with possible

malicious floating windows. At this point, the proposed im-

plementation will not be able to handle false positives,i.e. if

the Activity flag is set, it will be sensitive to any floating

window even if it was not a malicious one. That will be left

to the developer to handle. Developers have the best judgment,

wither to react to any floating window the same way through

different app stages.

A simple application level solution is also suggested by

introducing SecureActivity which can detect floating

windows by injecting touch events. Time overhead of both

approaches is measured.

Our research is a first step towards understanding the security

risks associated with floating windows on Android, as we also

believe that there is a gap in research related to Android dis-

play management in general and more specifically, its security

implications. Future work should investigate how serious this

issue is by scanning market apps that use floating windows.

More work should be done in the direction of analyzing the

purpose and the context of their usage.

VII. ACKNOWLEDGMENT

This work was supported in part by a Google Research

Award. Any opinions, findings, conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of Google. We would like

to thank Dayabaran Gangatharan for his help in implementing

the system based approach, as well as the reviewers of this

paper.

REFERENCES

[1] “Paranoid android,” http://paranoidandroid.co.
[2] “Xposed module respository,” http://repo.xposed.info/module/com.zst.

xposed.halo.floatingwindow.
[3] “Standout,” http://pingpongboss.github.io/StandOut/.
[4] “Google play- floating apps- multitaks,” https://play.google.com/store/

apps/details?id=com.lwi.android.flapps&hl=en.

[5] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting: a study of clickjacking vulnerabilities at popular sites,” IEEE
Oakland Web, vol. 2, p. 6, 2010.

[6] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson,
“Clickjacking: Attacks and defenses.” in USENIX Security Symposium,
2012, pp. 413–428.

[7] H. Shahriar, V. K. Devendran, and H. Haddad, “Proclick: a framework
for testing clickjacking attacks in web applications,” in Proceedings
of the 6th International Conference on Security of Information and
Networks. ACM, 2013, pp. 144–151.

[8] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel,
“A solution for the automated detection of clickjacking attacks,” in
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security. ACM, 2010, pp. 135–144.

[9] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Clickjacking
revisited a perceptual view of ui security,” BlackHat USA, August, 2013.

[10] “Clickjacking rootkits for android: The next big threat?” https://news.
ncsu.edu/2012/07/wms-jiang-clickjack/.

[11] M. Niemietz and J. Schwenk, “Ui redressing attacks on android devices,”
Proceedings of BlackHat Abu Dhabi, 2012.

[12] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking attacks
on web in android, ios, and windows phone,” in Foundations and
Practice of Security. Springer, 2013, pp. 227–243.

[13] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proceedings of the 10th
international conference on Mobile systems, applications, and services.
ACM, 2012, pp. 323–336.

[14] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of
the fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012, pp. 113–124.

[15] “Clickjacking,” http://www.sectheory.com/clickjacking.htm.
[16] U. Rehman, W. A. Khan, N. A. Saqib, and M. Kaleem, “On detection

and prevention of clickjacking attack for osns,” in Frontiers of Informa-
tion Technology (FIT), 2013 11th International Conference on. IEEE,
2013, pp. 160–165.

[17] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh, “Framing attacks
on smart phones and dumb routers: tap-jacking and geo-localization
attacks,” in Proceedings of the 4th USENIX conference on Offensive
technologies. USENIX Association, 2010, pp. 1–8.

[18] “Look-10-007 tapjacking,” https://blog.lookout.com/
look-10-007-tapjacking/, 2010, accessed: 2015-04-1.

[19] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: Ui state inference and novel android attacks,” in Proc.
23rd USENIX Security Symposium (SEC14), USENIX Association, 2014.

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction,” in Proceedings of the 36th International Con-
ference on Software Engineering. ACM, 2014, pp. 1036–1046.

[21] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond.” in USENIX Security, 2013, pp. 97–112.

[22] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D. Petkov, XSS
Attacks: Cross Site Scripting Exploits and Defense. Syngress, 2011.

[23] “Android: Activities,” http://developer.android.com/guide/components/
activities.html.

[24] “Android: Activity class,” http://developer.android.com/reference/
android/app/Activity.html.

[25] “What is windowmanager in android?” http://stackoverflow.com/
questions/19846541/what-is-windowmanager-in-android.

[26] “Android design patterns,” http://www.androiddesignpatterns.com/2013/
07/binders-window-tokens.html.

[27] “An in-depth introduction to the android permission model and how to
secure multi-component applications,” https://www.owasp.org/images/
c/ca/ASDC12-An InDepth Introduction to the Android Permissions
Modeland How to Secure MultiComponent Applications.pdf.

[28] “Android binder,” http://elinux.org/Android Binder.
[29] “Instrumentation,” http://developer.android.com/reference/android/app/

Instrumentation.html.
[30] “Robotium,” https://github.com/robotiumtech/robotium.
[31] “Genymotion,” https://www.genymotion.com/#!/.

458

