
iLayer: Toward an Application Access Control
Framework for Content Management Systems

Gorrell Cheek, Mohamed Shehab, Truong Ung, Ebonie Williams
Department of Software and Information Systems

College of Computing and Informatics
University of North Carolina at Charlotte

Charlotte, NC
{gcheek, mshehab, tung4, enwillia}@uncc.edu

Abstract—Content Management Systems (CMS) simplify the
process of web content creation, publication, and management.
Many CMS platforms are extensible via third party developed
applications providing additional functionality such as search, site
navigation, and location services. However, most CMS platforms
don’t have manageable access control mechanisms that regulate
third party applications. Unfettered and unchecked access of
third party applications is a security vulnerability that puts
web sites at risk. We introduce iLayer – an Application Access
Control Framework for Content Management Systems. iLayer is
a least privilege based model that protects content management
systems from third party developed applications. iLayer makes
policy recommendations to CMS administrators for third party
applications. These policies are reviewed and set by the CMS
administrator and enforced by the iLayer Framework. To verify
the feasibility of our approach, we implemented a prototype of
our framework on a popular open source content management
system.

I. INTRODUCTION

Content Management Systems (CMS) are used to simplify
the process of web content creation, publication and man-
agement. Traditionally, they don’t require in-depth technical
knowledge of operating systems, programming languages, etc.
There are both commercial and open source varieties on
the market today including Joomla, WordPress, MediaWiki,
Plone, and Drupal. Content management systems are deployed
in various forms supporting a variety of different market
segments including online publishing, online social network-
ing, enterprise content management, and document manage-
ment. Content management systems support many companies,
government entities, and academic institutions. For instance,
Whitehouse.gov, Popular Science Magazine, and the New York
Observer web sites are all powered by Drupal [6]. Joomla sup-
ports several notable web sites including Harvard University
and the United Nations Regional Information Center [12].

Third party applications expand the capabilities and func-
tionalities of content management systems. There are thou-
sands of applications available for most CMS platforms pro-
viding functionality like news publishing, location mapping,
photo galleries, etc. Can all these applications be trusted? Few
formal application development security practices are in place,
e.g., code reviews of third party applications, etc. There are
some secure coding guidelines available [19], [1], [13], [11].
But, there is little enforcement of their use.

We believe that web site administrators need additional
tools and mechanisms to protect their information assets from
attacks via third party applications. We propose an application
access control framework for content management systems
that is based on a least privilege security model [18]. This
framework gives visibility into the accesses that third party
applications request, in addition to aiding and guiding ad-
ministrators in making policy decisions. The security policies
are set at installation time and are enforced at run time. The
framework adds another layer of protection to the web site
and is an improvement of how CMS platforms implement
access control for third party applications. For example, some
content management systems regulate access to third party
applications via file permissions, which is cumbersome and
difficult to administer. Administrators would need to analyze
the application, know the intricacies of the CMS platform, and
be familiar with the underlying operating system to effectively
set the appropriate file permissions. This is a difficult and
tedious undertaking. With our proposed approach (iLayer), the
CMS administrator need only set the policy at installation time
and the framework enforces that policy at run time.

Our contribution is an Application Access Control Frame-
work for Content Management Systems. Our framework:
1) is based on a least privilege model, 2) protects content
management systems from third party applications, 3) protects
CMS third party applications from other CMS third party
applications, and 4) provides CMS administrators with third
party application policy setting functionality, including rec-
ommendations for policy settings. Finally, we implemented
a prototype of our framework on an open source content
management system.

The rest of the paper is organized as follows. Section II
provides an overview of content management systems. Section
III outlines the motivation behind our work. We describe our
iLayer Framework in Section IV and Section V provides an
overview of our prototype. Finally, we discuss related work in
Section VI and conclude the paper in Section VII.

II. PRELIMINARIES

A. Content Management Systems Overview

A Content management system is an online application that
provides users the ability to create, design, publish and manage

the content of a web site. In addition, content management
systems manage work flow allowing for collaboration. Users
of content management systems are not required to have an
in depth technical knowledge of web design or programming
languages. Users traditionally just leverage a browser based
interface to easily build and manage the content of a web
site. Content management systems support multiple users with
varying roles, e.g., content contributors, content consumers,
site administrators, etc.

Core Components

Content

Management

User

Management

Application

Admin

Session

Management

Presentation Layer / Templates

Function Library / API

Third Party

Applications
 Database

Layer / Content

Fig. 1. Content Management System

Typically, a CMS consists of four components: Presen-
tation Layer, set of Core Components, Function Library,
and Database Layer. See Figure 1. What follows is a brief
description of each:

1) Presentation Layer: Displays to the visitor of the web
site the output (or content) of the CMS. Typically,
templates populated with content are used to facilitate
the creation of the web site.

2) Core Components: Provides foundational CMS func-
tionality including basic content management, user man-
agement, application administration, session manage-
ment, etc.

3) Function Library / API: Library of functions that
perform various tasks (e.g., database calls, etc.). In
addition, an Application Programming Interface (API)
is provided for interfacing with third party applications.

4) Database Layer: Stores all content such as users’
profiles, blogs, files, etc. It also contains configuration
and policy management information.

One of the primary benefits of most content management
systems is that they can easily be expanded to include addi-
tional functionality. Content management systems publish their
APIs which allow third party developers to create applications
that interface with the CMS. These third party applications
provide additional capabilities. For example, a third party
developed calendar application can provide user scheduling
management. Or, a third party developed mapping application
can provide location information for a restaurant web site.

More often than not, these applications are free to the com-
munity to download, install and use.

B. Application Access Control Approaches in Content Man-
agement Systems

Content management systems provide user access control
and management capabilities. However, access control func-
tionality for third party applications is not as well developed.
Third party applications can, and in some cases do, have full
administrator level access to the web site’s content and data,
e.g., configuration information, user information, passwords,
etc. CMS platforms, such as WordPress, Plone, and Joomla,
allow web site administrators to easily install third party appli-
cations. But, most CMS platforms advise the administrator to
secure their database and server configurations and change all
the default passwords after installing new versions of software
[21], [14], [12]. CMS platforms have traditionally addressed
application access control as an after thought.

Third party applications developed for WordPress have full
access to the content management system and the database, un-
less restricted through file permissions. There is no mechansim
where an administrator can set permissions during the instal-
lation of a third party application. File permissions are not
handled through a designated WordPress screen. Instead, the
administrator must set the file permissions via the command
line of an operating system shell. The administrator needs to
find the right balance between restrictive and lax permissions
[21]. Application and WordPress software functionality is
affected if permissions are too strict. Permissions that are too
lax present a security risk. The skills to set these permission
levels is not universal among CMS administrators. Managing
third party application access in WordPress is not trivial and
can be easily misconfigured.

The Plone CMS platform has strong user-based access
controls. Plone uses the Zope content management interface
to set access control lists, groups, and roles [14]. Roles have
permissions; roles are assigned to groups; and, users are added
to groups. This approach is extended to third party applications
as well. However, this access control framework is centered
on the user and not the application. File permissions are the
primary way to restrict the access of third party applications in
Plone. Similar to other CMS platforms, Plone third party ap-
plications have full access to the content management system
including the database.

Joomla is another CMS platform that allows third party
developed applications to interface with its content manage-
ment system. The administrator must also use file permissions
to control the access given to these applications [12]. Other
than file permissions prohibiting access, third party application
access is not explicitly controlled like user access. There is not
a permissions granting process during installation either.

Thus, even though there are methods that allow web site
administrators to control the access of third party developed
applications, they are limited in capability and are not very
easy to use. The administrator would need to understand and

2

TABLE I
SAMPLE OF DRUPAL CORE DATABASE TABLES ACCESSED BY 412 THIRD PARTY APPLICATIONS

Table Name Table Description Potential Impact % of Modules That
Require Access

sessions Contains user session information, e.g., userID, sessionID, user IP address, etc. Session hijacking 2%

users roles Lists the assignments between users and roles Privilege escalation 5%

node revisions Contains edits / revisions of node content Content compromise 7%

permissions Lists each user role’s permissions Privilege escalation 7%

users Contains usernames, passwords, profile information, etc. Account compromise 23%

translate the access requirements of the third party applica-
tion into file permissions (e.g., in the case of Joomla) and,
possibly, database and server configurations. This is not an
easy undertaking and, more often than not, administrators take
minimal or no action to secure their web sites from third party
developed applications. The average web site administrator
may not have sufficient skills or experience to know all of
the risks associated with third party applications and how they
may impact their web site.

III. MOTIVATION

Most CMS platforms have user access control mechanisms
based on a least privilege security model that enforces the
limits of what a user can and can’t do. A user is assigned a role
which has a set of permissions that relate to the actions that
the user is allowed to perform. For example, an administrator
level user has full access to the web site. They can add, modify,
and delete content, and manage settings and applications. A
content consumer user has more limited access. They can edit
their profile and read (or consume) the web site’s content.

A similar least privilege based approach to access control
for CMS third party applications is not available. As previously
mentioned, third party developed application access control is
either non-existent or hard to configure for the average web
site administrator, in addition to having limited capability. A
least privilege based access control framework for third party
developed applications within content management systems is
needed. Applications need only be given access to the objects
and resources they require, as opposed to the entire content
management system.

Unfettered and unchecked access of third party applications
is a security vulnerability that puts web sites at risk. For
example, a hypothetical social networking web site called
Social123 is powered by a CMS platform. The administrator
has installed several third party applications to customize and
enhance the social networking site. One installed application,
BdayCal, has full access to the database, yet only requires
a subset of access, e.g., users’ birthdays to be displayed on a
calendar. An attacker can target Social123 via BdayCal to gain
access to the login credentials of all of the users on the social
networking site. These credentials are stored in the users table
within the database. A poorly written third party application
may find itself vulnerable to a SQL injection attack which
would expose all the tables, including the users table. Even
though BdayCal only requires access to the table containing
users’ birthdays, all tables are available to the application and

thus increase the risk of compromise and misuse.
On a popular CMS platform called Drupal [6], we con-

ducted a study of 412 popular third party applications in
order to analyze the database calls made by them. Through
static analysis, we extracted the database table accesses made
by these applications. In Drupal, database calls are made by
using the db query() function. For every database call, we
parsed through the SQL statement to find the database tables
and recorded the results. We found that applications accessed
tables they created and the core tables provided by Drupal.

We also found that third party applications have significantly
more access to the Drupal core tables than what is required.
Only 2% of the applications required access to the sessions
table. That leaves 98% who didn’t require access and yet
had access thus leaving the web site vulnerable to session
hijacking. See Table I. Only 7% of the modules required
access to the node revisions and permissions tables leaving
roughly 382 applications (or modules) access to these tables
and thus vulnerable to potential privilege escalation and con-
tent compromise attacks. The users table is a default table
that holds basic user information such as user names and
passwords. Approximately 77% of the applications didn’t need
access to this table but did have access. These are clearly
not examples of least privilege and therefore the risk of
compromise increases.

IV. ILAYER

In order to improve the security of content management
systems, we introduce iLayer – an application access control
framework. iLayer’s primary goal is to set and enforce least
privilege access for third party developed applications that
integrate with content management systems. A subsequent
design goal of iLayer is ease of use with minimal administra-
tion while enhancing the security of the content management
system.

iLayer’s Architecture has two primary components: Refer-
ence Monitor and a corresponding Policy. See Figure 2(a).
The reference monitor controls all access from third party
applications to the database. Basically, the reference monitor
verifies that third party application database requests are
allowed by the policy. There are three primary steps in estab-
lishing the architecture: iLayer Setup, Third Party Application
Installation, and Runtime Enforcement. See Figure 2(b).

3

Core Components

Content

Management

User

Management

Application

Admin

Session

Management

Presentation Layer / Templates

Function Library / API

iLayer – Reference Monitor

iLayer

Policy
Third Party

Applications
 Database

Layer / Content

(a) iLayer Architecture

Step A – iLayer Setup Step B – Third Party Application Installation

Policy Rule Tuples

with

Recommendations

CMS Library

core Function

Refactoring

Application core

Functions

Determine

Requested

Access

CMS Admin

Application

Access

Analysis

Approved All Selected Access

Application i_core

Functions

Application

core Function

Parsing and

Replacement

iLayer Policy

Step C – Runtime Enforcement (Reference Monitor enforces policy)

End

Deny All Access

Manifest

(b) Establishing the iLayer Architecture

Fig. 2. The iLayer Framework

A. iLayer Setup
The first step in installing the iLayer Architecture within

a CMS platform is creating a table in the database to store
and manage the iLayer Policy. A policy is made up of three
components:
• subject: third party application that will be granted access
• object: database table being given access to
• permission: access privilege that is granted which could

be either:
1) read (select)
2) write (delete, insert, update)
3) read & write

After the policy table is set up, all core CMS platform
functions that perform database calls are identified in the
CMS Function Library, e.g., core(arg), where arg contains
the database table name and the requested action, i.e., select,
delete, insert, or udpate. After which, the core functions are
refactored [8], i.e., a corresponding i core(3PA Params, arg)
function is added to the CMS Function Library for each
core function that makes a database call, e.g., core(arg).
The i core(3PA Params, arg) function will have the same
arguments as its corresponding core function with the addition
of the calling third party application parameters, where:

3PA_Params = array(
"name" => "Application Name is...",
"id" => "Application ID is...",
...

)

The i core function performs a policy check. If the policy
is violated, access to the requested database table is denied
and an error message is returned. If the policy is not violated,
the i core function calls its corresponding core function and
operation proceeds normally. Figure 3 shows a code sample
of a core function and its corresponding i core function.

Original core()

function core(arg) {

 …

 //extract table name and

 action from the arg

 …

}

Refactored core() to i_core()

function i_core(3PA_Params, arg) {

 …

 //extract table name and

 action from the arg

 //loop for all table names

 if(matchPolicy(3PA_Params, table, action) = null)

 errorHandler();

 else

 core(arg);

}

Fig. 3. Refactoring Core function

B. Third Party Application Installation

After the iLayer is setup within a CMS platform, third party
applications can be installed. The first step in the installation
process is the determination of the requested access by the
third party application. Policy recommendations are then pre-
sented to the CMS administrator for review and the policy is
selected and approved by the CMS administrator. After which,
the third party application code is parsed and all instances of
core functions are replaced with their corresponding i core
functions. Finally, the remaining installation steps for the third
party application proceed normally.

1) Determination of Requested Access: Two approaches are
leveraged in determining the requested access by the third
party application: 1) Manifest provided by the third party
developer, and 2) Application access analysis. A manifest is
a file provided by the third party application developer that
outlines the required and optional application privileges; the
application developer declares all of the application’s database
accesses. The manifest is stored in XML format and contains a
set of (subject, object, permissions, required flag, comments)
policy rule tuples. Figure 4 displays a sample file.

The required flag indicates whether the access is required
for the proper execution of the application. If the flag is

4

<manifest>
<policy_rule id="pr1">

<subject>appName</subject>
<object>birthday_table</object>
<permission>select</permission>
<required_flag>0</required_flag>
<comments>Access is not required; but...</comments>

</policy_rule>
<policy_rule id="pr2">
…
</policy_rule>

</manifest>

Fig. 4. Sample manifest file

not set, the comments field can be used by the developer to
elaborate on the optional nature of the access, e.g., “Access to
birthday table is not mandatory; but if access is not provided,
ages will not be displayed.”

Regardless of whether a manifest is available, the ap-
plication code is statically analyzed at installation time for
all database calls. Similarly as for the manifest, the output
of the application access analysis is a set of (subject, ob-
ject, permissions) policy rule tuples that describe the third
party application database accesses, e.g., (application name,
database table name, read). In addition to identifying all
database calls, all called third party applications functions are
identified and their respective iLayer Policies are retrieved
from the policy repository.

2) Setting the Policy: The manifest and the output of the
application access analysis (to include all called application
iLayer Policies) are presented to the CMS administrator as a
series of policy rule tuples. In addition, CMS administrators
are presented with additional information to assist them in
making their policy decisions. For each policy rule tuple,
a thumbs up or thumbs down policy rule recommendation
is presented, where a thumbs up recommends adoption of
the policy rule tuple and a thumbs down does not. This
recommendation is an indicator of the community’s usage of
the policy rule tuple.

Policy Rule Recommendation: The thumbs up/down policy
rule recommendation is based on the maximum likelihood of
the set of possible permission combinations for all requested
objects based on historically granted accesses. Let A equal the
set of all possible accesses that can be requested by third party
applications, A = {a1, a2, . . . , an}, where ai is an object to
permission pairing, e.g., sessions-read. Let λ equal the set of
all previously granted third party application accesses, where
λ ⊆ A. Figure 5 displays a sample of previously or historically
granted accesses (Application IDs 001 to 412), where the
decision variable:

xi =
{

1 if ai is granted
0 if otherwise

When installing a third party application, the set of re-
quested accesses (object-permission pairings) is denoted by
R, where R ⊆ A. In our framework, the set R is obtained
from the application access analysis and / or the manifest. For

� ���� ���� ��	
 ������ �������� ���� ��� � ��������������� !"� #$�%& ' ��� !"� #($)� *��$ +$!, �� #$�%& *��$ +$!, �� #($)� "!& � +$� -� #$�%& "!& � +$� -� #($)� . / , �� #$�%& / , �� #($)�001 0 1 0 0 0 1 0 0002 0 0 0 0 0 0 1 0003 1 1 1 0 0 0 0 14512 0 1 0 0 0 1 0 1513 0 0 0 0 0 0 6 6
Fig. 5. Historically granted accesses of third party applications

example, in Figure 5, Application ID 413 is being installed and
R = {files-read, files-write}. R̄ denotes the set of accesses that
were not requested. The accesses that were not requested (R̄)
are automatically not granted to the third party application.

The policy rule recommendation for the requested accesses
is computed based on statistically examining the set λ. Without
the loss of generality, let R = {a1, a2, . . . , ar−1} and let
R̄ = {ar, ar+1, . . . , an}. The decision is not to grant R̄ –
therefore, using the decision variable, R̄ = {xr = 0, xr+1 =
0, . . . , xn = 0}. For R, the values (or recommendations) for
x1, x2, . . . , xr−1 are computed by:

X = arg max
x1,...,xr−1

P (xr = 0, . . . , xn = 0 | x1, . . . , xr−1)

X = {x1, . . . , xr−1} is the set of recommended accesses
that maximize the conditional probability of the set of accesses
that were not requested (or granted) given the possible permis-
sion combinations for all requested objects taking into con-
sideration the historically granted accesses λ. In other words,
this mechanism chooses the recommendations X that are most
probable based on historical accesses. For example, Appli-
cation ID 413 requests two accesses {files-read, files-write},
see Figure 5. There are four possible recommendations, see
Figure 6. The conditional probability P (R̄|X) is computed for
each possible recommendation combination. In our example,
allowing both requested accesses {files-read, files-write} are
recommended because this combination has the maximum
probability.

files - read files - write X
deny deny {x1 = 0, x2 = 0} 0
deny allow {x1 = 0, x2 = 1} 0
allow deny {x1 = 1, x2 = 0} .2
allow allow {x1 = 1, x2 = 1} .5

Fig. 6. Recommendation computation example

For each access xi, the policy rule recommendation is
presented to the CMS administrator in the form of a thumbs
up/down where a thumbs up recommends the adoption of the
requested object-permission pairing xi and conversely for a
thumbs down. For example, if xi = 1, a thumbs up is presented

5

to the CMS administrator signifying a recommendation for this
access request and a thumbs down would be presented when
xi = 0.

The number of conditional probability computations equal
2n, where n equal the number of requested accesses. Our
research shows that the number of requested accesses n is rel-
atively small and therefore manageable from a computational
perspective. Figure 7 shows the distribution of the number of
accesses (database table-permission) for 412 Drupal modules
(third party applications). The average number of accesses is
2.45 and the median is 2.

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

180

of accesses (Database table − permission)

#
 o

f
3

rd
 p

ar
ty

 a
p

p
s

(m
o

d
u

le
s)

Fig. 7. Accesses of Drupal modules

Policy Decision: All the policy rule tuples are presented
to the CMS administrator who can then can review each and
grant the appropriate access as necessary, see Figure 9(b) for
an example screen shot. After reviewing and granting access
for each policy rule tuple, the CMS administrator has two
options:
• Approve all selected access: All selected accesses (from

both the manifest file and the application access analysis)
are approved and the policy is written to the iLayer policy
table.

– Note: Required accesses (as specified in the manifest
file) cannot be disallowed. The only option, other
than allowing the required accesses, is to “Deny all
access”.

– Note: When only application access analysis is pre-
sented, some knowledge of the third party application
is required; otherwise, selectively disallowing access
could lead to unpredictable behavior at execution.

• Deny all access: All access presented is denied and
installation of the application is terminated.

3) Function Parsing and Replacement: After the policy is
composed and stored in the iLayer policy table, the third party
application code is parsed and all instances of core functions
are replaced with their corresponding i core functions that
were added to the CMS Function Library during the iLayer
Setup phase. The remaining native installation steps for the

third party application are unchanged and the installation of
the application proceeds normally.

C. Runtime Enforcement

Upon execution of the third party application, the iLayer
Reference Monitor enforces the iLayer Policy that was set at
installation time. The default action of the reference monitor
is to deny all access, i.e., if there does not exist an explicit
permit statement in the policy, the reference monitor denies all
access attempts. During execution time, the i core functions
are called and thus invoke a policy check for every database
call. The i core function takes the third party application name
and the query arguments as its parameter. It will then extract
the table name, action (select, delete, insert, or update) from
the query arguments and try to establish a match with one of
the policy statements in the iLayer policy table. If a match is
found, the corresponding core function is called and normal
operations are allowed to proceed. Otherwise, an errorHandler
is called to display an access denied error message to the user.

Core Components

Content

Management

Module

Other Core

Modules

Presentation Layer / Templates

Hook Library / API

iLayer – Reference Monitor

iLayer

Policy

User

Management

Module

Contributed

Modules
 Database

Layer / Content

Fig. 8. Drupal iLayer Architecture

V. CMS APPLICATION ACCESS CONTROL PROTOTYPE

A. Drupal Overview

We prototyped our application access control framework
on Drupal. Drupal is a popular open source CMS platform
capable of providing a wide range of services, from personal
web sites to the foundation of a social networking site. Like
other CMS platforms, Drupal has a mature user-based access
control framework. Also, like other CMS platforms, third
party applications allow Drupal web site administrators to
add custom capabilities and features. And, similarly to other
CMS platforms, Drupal has very limited third party application
access control capabilities – mainly only in the form of file
permissions.

Using the concepts of modules, nodes and hooks, Drupal
provides an abstracted approach to handling web content and
functionality [20]. Drupal is based on a modular framework.
Its functionality is provided in the form of these modules or

6

Original db_query()

function db_query($query) {
 …
 //extract table name and
 action from the $query

 return _db_query($query);
}

Refactored db_query() to idb_query()

function idb_query($moduleID, $query) {
 …
 //extract table name and
 action from the $query

 //loop for all table names
 foreach($strArray as $key => $table_name) {
 $action = 0; // 0 is read, 1 is write
 if($strArray[0] ==”select”) $action = 0; else $action = 1;
 …
 $result = db_query("SELECT count(*) as cnt
 FROM {iLayer_policy} WHERE
 moduleID = '%s' and
 tableName = '%s' and
 grantAccess = %d",
 $moduleID, $table_name, $action);
 $row = db_fetch_object($result);
 if($row->cnt < 1)
 //no match found; display error; return null
 }
 //after all matches found, forward call to original _db_query

 return _db_query($query);
}

(a) Refactoring db query function

(b) iLayer Policy review page for Drupal Flash Node Module

Fig. 9. iLayer DB refractoring and the policy review process

applications. Modules can be part of the base installation -
built in core modules. Modules can also be developed by the
Drupal community, called contributed modules and previously
referred to as third party applications. See Figure 8. There
are thousands of contributed modules available for download.
These modules expand the functionality of Drupal. But, they
also increase the attack surface and thus potentially increase
the risk of compromise.

The primary way to access Drupal functionality is via hooks
implemented in modules. In the most basic sense, hooks
act as functions and are stored in the Hook Library. Drupal
functionality is usually delivered in the form of content. A
node in Drupal is a piece of content. Drupal supports many
different node types, e.g., blog node type, page node type,
story node type, etc. The characteristics of each node (or
piece of content) is inherited from a node type. Therefore,
managing content by node type impacts all nodes of that type.
For instance, in order to add a user access rule for a blog entry
node, the administrator only needs to modify the blog node
type and the change will propagate to all of the other blogs
on the site.

B. Drupal iLayer Setup
The first step in implementing the iLayer Architecture in

Drupal is setting up the policy table. We created a table called
iLayer policy. Policy statements are stored in the policy table
and are made up of three components: the module name
(subject), the database table name (object) and the access
request (permission). Next, all the core Drupal hooks (func-
tions) that perform database calls are identified and refactored.
We chose to refactor the db query() hook for our prototype
because db query() is the main Drupal hook that every module
uses in order to execute a database call / query. We added
the refactored db query() hook, idb query(), to the Drupal
Hook Library. It has the same arguments as db query() with
the addition of the calling module name. The idb query()
hook performs a policy check. If the policy is not violated,

idb query() forwards the call to the original db query() hook
and operation proceeds normally. If the policy is violated,
access to the requested table is denied and an error message
is returned. See Figure 9(a) for a code sample of db query()
and its corresponding idb query() hook.

C. Contributed Module Installation

After the iLayer Architecture has been setup on the Dru-
pal platform, we then can install third party applications or
contributed modules. One Drupal module we installed in our
prototype was Flash Node [17]. Flash Node allows CMS
administrators to easily add flash content to their sites. As
part of the module installation process, the access control
policy is presented to the CMS administrator. Since Flash
Node doesn’t come with a developer generated manifest file
that declares the required and optional accesses for the module,
application access analysis is performed to determine the
requisite database calls for Flash Node. The output of the static
analysis is presented to the CMS administrator for review and
action, see Figure 9(b). The CMS administrator is presented
the module policy in the form of a subject (Flash Node),
object (Table Name) and permissions (select, delete, insert,
update) policy rule tuple. The CMS administrator reviews the
policy, to include the policy rule recommendation in the form
of a thumbs up/thumbs down, where thumbs up means the
policy rule is recommended and conversely for a thumbs down.
After which, the CMS administrator grants the appropriate
access by checking the box for each selected policy rule tuple
and then clicks on Approve all selected access. The policy is
written to the iLayer policy table. After which, all instances
of db query() in the Flash Node module are replaced by the
refactored idb query() hook. The remaining native Flash Node
module installation steps proceed normally.

D. Runtime Enforcement

Upon execution of the Flash Node module, database ac-
cesses are made by calling idb query(). The idb query() hook

7

takes the module name and query arguments as its parameters.
The called database table name and action (select, delete,
insert, or update) are extracted from the query arguments.
These two parameters coupled with the module name are used
as criteria to find a policy statement match in the iLayer policy
table. If a matching policy statement is found, access to the
table is granted and execution proceeds normally. If a policy
statement is not found, an error message is displayed and
access to the requested table is disallowed.

VI. RELATED WORK

Barth et al. analyzed the security implications of browser
extensions [3]. Browser extensions are third party developed
applications that add functionality to the browser. Firefox is
a popular web browser, in part because of its extensions.
By default, extensions are given full privilege to the web
browser. Barth et al. conducted a case study to assess the
access privileges granted versus needed by Firefox extensions.
They found that 88% of extensions did not need full privileged
access. They proposed a browser extension system that im-
poses the principle of least privilege. The approach presented
requires developers to rewrite their code, to include adding a
manifest file declaring requisite accesses, in order to be able to
leverage the enhanced browser extension system. The iLayer
Framework also is based on least privilege, in addition to
allowing for a manifest file - though not mandatory. Requested
accesses can also be obtained within the iLayer Framework
via application access analysis during the installation process
allowing for backward compatibility.

Enck et al. researched how smartphones fail to provide
visibility and control over third party developed applications
[7]. They introduce TaintDroid, which monitors and tracks
third party developed Android applications’ use of sensitive
data. Their research found that the potential for misuse of
users’ sensitive data is great amongst third party applications.
TaintDroid dynamically monitors the behavior of these appli-
cations at run time. iLayer statically analyzes the third party
application accesses at installation time. But, iLayer goes one
step further by enforcing set policies at run time.

Significant research has been dedicated to collaborative
filtering recommendation systems where the community’s in-
terests are a predictor for a specific user’s interests [4], [9],
[10], [2]. There also has been much work published on the
privacy risks of recommendation systems [16], [15], [5]. But,
little research has been dedicated to using recommendation
systems for access control policy settings. We introduce a
novel approach that leverages the community’s access control
settings to make recommendations for third party application
policies.

VII. CONCLUSIONS / FUTURE WORK

We presented an Application Access Control Framework
for Content Management Systems. Our framework is based
on least privilege and provides content management systems
protection from third party applications. In addition, our

framework provides CMS administrators third party applica-
tion policy setting functionality, including a policy setting rec-
ommendation capability that enhances knowledge in making
policy decisions. Finally, we implemented a prototype of our
access control framework on the Drupal Content Management
System platform.

We plan to extend our work by providing CMS adminis-
trators the ability to review and update third party application
policies post installation. Our framework will also be extended
by expanding our view of objects beyond database tables to
include function calls. We plan to benchmark the performance
impact of policy enforcement. In addition, we plan to conduct
a detailed survey and analysis of threat vectors. Finally, we
plan to further validate our model via an expanded user study.

REFERENCES

[1] CERT Secure Coding. ”http://www.cert.org/secure-coding”, 2010.
[2] X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and N. Oliver. The

wisdom of the few: a collaborative filtering approach based on expert
opinions from the web. In SIGIR ’09: Proceedings of the 32nd
international ACM SIGIR conference on Research and development in
information retrieval, pages 532–539, New York, NY, USA, 2009. ACM.

[3] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers
from extension vulnerabilities. In NDSS, 2010.

[4] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of
the14th Annual Conference on Uncertainty in Artificial Intelligence
(UAI98), pages 43–52, 1998.

[5] S. Chen and M.-A. Williams. Towards a comprehensive requirements
architecture for privacy-aware social recommender systems. In APCCM
’10: Proceedings of the Seventh Asia-Pacific Conference on Concep-
tual Modelling, pages 33–42, Darlinghurst, Australia, Australia, 2010.
Australian Computer Society, Inc.

[6] Drupal.org. Drupal - Open Source CMS. ”http://Drupal.org”, 2010.
[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of OSDI
2010, October 2010.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[9] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algo-
rithmic framework for performing collaborative filtering. In SIGIR ’99:
Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 230–237,
New York, NY, USA, 1999. ACM.

[10] R. Jin, J. Y. Chai, and L. Si. An automatic weighting scheme for
collaborative filtering. In SIGIR ’04: Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 337–344, New York, NY, USA, 2004. ACM.

[11] Joomla! Secure Coding Guidelines. ”http://docs.joomla.org/Secure
coding guidelines”, 2010.

[12] Joomla.org. Joomla! ”http://www.joomla.org/”, 2010.
[13] OWASP. Open Web Application Security Project. ”http://www.owasp.

org”, 2010.
[14] Plone.org. Plone CMS: Open Source Content Management. ”http://

Plone.org”, 2010.
[15] N. Ramakrishnan, B. Keller, B. Mirza, A. Grama, and G. Karypis.

Privacy risks in recommender systems. Internet Computing, IEEE,
5(6):54 –63, Nov/Dec 2001.

[16] J. Riedl. Personalization and privacy. Internet Computing, IEEE, 5(6):29
–31, Nov/Dec 2001.

[17] S. Greenfield. Flash Node. ”http://drupal.org/project/flashnode”, 2010.
[18] J. H. Saltzer. Protection and the control of information sharing in

multics. Commun. ACM, 17(7):388–402, 1974.
[19] R. C. Seacord. The CERT C Secure Coding Standard. Addison-Wesley

Professional, 2008.
[20] J. K. VanDyk and D. Buytaert. Pro Drupal Development. Apress,

Berkely, CA, USA, 2007.
[21] WordPress.org. WordPress. ”http://WordPress.org”, 2010.

8

