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Abstract—Fine grain policy settings in social network sites
is becoming a very important requirement for managing
user’s privacy. Incorrect privacy policy settings can easily
lead to leaks in private and personal information. At the
same time, being too restrictive would reduce the benefits
of online social networks. This is further complicated with
the growing adoption of social networks and with the rapid
growth in information uploading and sharing. The problem
of facilitating policy settings has attracted numerous access
control, and human computer interaction researchers. The
solutions proposed range from usable interfaces for policy
settings to automated policy settings. We propose a fine
grained policy recommendation system that is based on an
iterative semi-supervised learning approach that uses the social
graph propagation properties. Active learning and social graph
properties were used to detect the most informative instances
to be labeled as training sets. We implemented and tested
our approach using real Facebook dataset. We compared our
proposed approach to supervised learning and random walk
approaches. Our proposed approaches provided high accuracy
and precision when compared to the other approaches.

Keywords-Semi-Supervised Learning, Graph-based Propaga-
tion, Policy Recommendation, Active Learning.

I. INTRODUCTION

Social networks (SN) contain large amounts of user data.
SNs allow users to create and manage accounts, and publish
and share information with their friends. Multiple SN sites
such as Facebook and Google+ provide fine grained privacy
settings. For instance, some SNs allow users to specify a
fine grained policy for a certain object at both user and
group levels. Posted objects could be as general as a photo
album, or as detailed as a comment on a specific photo.
With these sophisticated fine grain policy settings, average
users are required to manage and administer the privacy
of their accounts instead of enjoying the SN services. In
addition, the management of privacy policies for a large
number of objects and friends is a tedious and complicated
task. In response to the SN privacy management limitations,
several solutions ranging from visualization tools to policy
recommendations were proposed. Pviz is a visualization tool
that was proposed by Mazzia et. al [1] to facilitate the
privacy settings comprehension. Anwar et. al [2] proposed a
visual tool for policy analysis that allows users to visualize
their neighborhood access to their data. These tools were
limited to help users understand their privacy settings and

did not provide recommendations on their privacy settings.
Other approaches such as policy wizard [3] and policy
manager [4] proposed providing users with policy recom-
mendations based on training supervised learning models.
These approaches are based on SN clustering and profile
metrics and do not fully exploit SN metrics and network
propagation properties. In addition, these approaches focus
on building classifiers for a single object and do not generate
recommendations for multiple objects posted by the user.

To overcome the limitations of these approaches, we
propose a privacy policy recommendation approach based on
an iterative semi-supervised learning (SSL) technique. Our
proposed approach is based on the clustering assumption
that similar or nearby users should have similar labels
(permissions). User to user similarity is computed using
both the users’ profile attributes and SN metrics. Users
are asked to label a small set of their friends, ultimately
these labels (permissions) are propagated over the SN to
provide users with privacy policy recommendations. Further-
more, we propose a mechanism to generate privacy policy
recommendations for multiple objects while reducing user
effort by leveraging both collaborative active learning and
object similarity. The main contributions of this paper are
summarized as follows:

• We proposed an SSL based approach to reduce the
training set size, and to facilitate label propagation.

• We proposed active learning to reduce user effort by
detecting the most informative friends to label.

• We proposed an object collaborative active learning
approach to further reduce the user effort.

• We implemented our approach and compared it to
supervised learning and random walk approaches.

The rest of the paper is organized as follows: In Section II,
we provide a brief background of privacy policies in SNs
and semi-supervised learning. In Section III, we present our
proposed semi-supervised learning approach, active learning
and object collaborative active learning. We present our
prototype implementation details and experimental results
in Section IV. The related work is presented in Section V.
The conclusion is presented in Section VII.



II. PRELIMINARIES

In this section we discuss preliminaries related to notation
for modeling social network policies, and graph based semi-
supervised learning approaches.

A. Policies in Social Networks

A social network can be represented as a user graph
Gu = (Vu, Eu) where Vu represents the set of users and Eu
is the set of relationships between users. Each user ui ∈ Vu
maintains a profile Pi = {ai,1, . . . , ai,n} that is composed
of profile attributes ai,k from domain Dk, such as age,
location, interests, etc. The user friendship relationships can
be represented by edges between the vertices, where a link
(ui, uj) ∈ Eu describes a friendship relationship between
user ui and uj . Users can post content such as photos and
can share them with their friends. The user posted objects are
also represented by an object graph Go = (Vo, Eo) where the
vertices represent objects and the connections between them
represents hierarchical relations between objects, such as
parent-child relationships, for example an album and photos
in the album.

Most current SNs provide users with customizable fine-
grained privacy settings. Depending on the objects’ sensi-
tiveness, subjects role, and actions to be performed, SN
users define privacy policies. This forces users to perform
additional efforts in managing their privacy settings, which
becomes too tedious with the large number of friends,
objects, and permissions. The privacy policy indicates which
subjects (friends) from the user graph Gu who are able to
access (eg. read, write) objects from the object network Go.

B. Semi-Supervised Learning

Semi-Supervised Learning (SSL) is a combination of
supervised and unsupervised learning. It uses both labeled
data, where the instances’ classes are known, and unlabeled
data, where only the instance’s features are known. SSL
uses unsupervised learning to separate the classes’ domain
regions and uses fewer labeled data than supervised learning
to label the domain regions [5]. SSL adopts the consis-
tency assumption, where closer (similar) points have similar
classes [6]. Multiple SSL models have been proposed [7],
[8], [9], the main differences is in their context of use and
the application of the consistency assumption.

Since SNs are mainly represented with graph structures, a
graph based SSL is most suited for our task. The assumption
behind the graph based SSL is that labels can be propagated
from labeled instances to unlabeled instances connected by
edges. Instances (nodes) connected with larger edge-weights
tend to have same labels, and this naturally translates in
SNs as users with stronger connections (larger similarity)
have same labels. Another benefit of graph based SSL is to
capture the structural topology and contextual information
of users. In fact, one of our main assumptions is that users
within same clusters have similar permissions. Thus, we

propose an iterative approach that uses label propagation on
weighted and attributed graphs. For instance, in Figure 1,
we show that nodes connected with thicker edges (larger
weights) have similar labels (+1, -1). Commonly a graph
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Figure 1. Social Graph Representation.

G(V,E) and edge weight matrix W are used in graph based
SSL. The weight matrix W is constructed on the graph G
such that each wi,j is the similarity or distance between
instances i and j of V . The weight matrix is generally
normalized to represent the normalized graph Laplacian as
follows: S = I − D−1/2WD−1/2, where D is a diagonal
normalization matrix with diagonal elements representing
the sum of row of the weight matrix W . Given a graph
Laplacian matrix S for a graph G, an initial labels matrix Y ,
and a diffusion coefficient α ∈ (0, 1), the SSL propagation
function is defined as:

F (t+ 1) = αSF (t) + (1− α)Y

For more details related to SSL the interested reader is
referred to [5]. SSL was used previously to exploit infor-
mation leaks in social networks. However, to the best of
our knowledge, this is the first attempt to use SSL in SNs
privacy policy recommendations. In the following section,
we will describe how we use graph based SSL for SNs’
policy recommendations.

III. PROPOSED APPROACH

The problem of labeling friends for privacy policy settings
can be modeled as a two-class classification problem, where
the class labels include the policy actions Allow and Deny.
We strive to predict privacy label recommendations from
previous user preferences while maintaining minimum user
involvement. To minimize the number of labeled data, thus
the user’s effort, we use an iterative semi-supervised learning
approach. The main steps of our approach are described in
the Figure 2.

Given an attributed weighted graph G(V,E) representing
a SN graph, we construct the weighted adjacency matrix
W . The similarity computation is important for SSL based
approaches, since it guides the label propagation. The simi-
larity between users is computed using their feature vectors.
In online SNs there is a large number of directly available
features (such as profile attributes and social graph), in
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Figure 2. Policy Learning Model

addition there are features that can be extracted from the SN
graph (such as network metrics and spectral coordinates).
For each user the profile information, network metrics
and community information are described using the profile
vector XP , network vector XN , and spectral coordinates
XS respectively. The network represents the importance
and status of the user in the SN using metrics such as
centrality, betweenness and degree [10], [11], [4]. The
spectral coordinates are computed based on the eigenvectors
of adjacency matrix of G. There are multiple approaches for
merging the user’s contextual and spatial features, some of
which are described in [9]. In this paper, we adopt both
the simple stacking and weighted approaches. The simple
stacking approach simply combines all the user’s feature
vectors into a single vector X = (XP , XN , XS). The
similarity wi,j between users i and j feature vectors Xi

and Xj using the RBF kernel. The RBF kernel is used
for its proven effectiveness and its simplicity having only a
single bandwidth coefficient σ. We also used other similarity
techniques to compare against the RBF kernel, such as the
cosine similarity; however the RBF kernel gave the best
results. The similarity between users i, and j is set to 0
if (i, j) 6∈ E, otherwise the value of wi,j in the similarity
matrix is computed as follows:

wi,j = e(−‖Xi−Xj‖2/2σ2) ∀i 6= j

The weighted approach generates a weight sum of similari-
ties computed using each feature vector separately. Through
this approach we are able to control the contribution of each
feature vector in the computed similarity. The weighted sum
is computed as wi,j = β1 wXP

i,j + β2 wXN
i,j + β3 wXS

i,j ,
where β1 + β2 + β3 = 1 and wXP

i,j represents the similarity
computed based on XP . Both the stacking and weighted
approaches generated similar results due to the use of
Principal Component Analysis.

To select the initial set of friends to be labeled is an
essential step that has an effect on the classification process.
We are eager to minimize the number of initial labeled
friends to reduce the user’s effort. We leverage the Clasuet
Newman Moore (CNM) network clustering algorithm [12]
to cluster the user’s SN graph into clusters of friends. From
each cluster the nodes with high betweenness centrality

values are selected to be labeled by the user, this ensures
that the selected nodes have a contribution to the SSL label
propagation [13]. In addition, the initial training set was
chosen by community and permission type. This allows
us to build an initial labeled dataset that represents each
cluster and to balance the permission types. In other words,
users label an initial balanced number of allowed and denied
friends for each computed cluster.

We represent the initial labeled data with an n× 2 binary
matrix Y representing the user’s permissions for a particular
object o ∈ O, where n is the number of users and each
yi,j represents the user i permission label represented by
the column index j (where j = 0 represents the Deny
column and j = 1 represents Allow), where (1,0), (0,1) and
(0,0) represent deny, allow and unlabeled respectively. For
example, Bob posted a new object and would like to setup
his privacy policy for his friends David, Alice and Marry.
He denies access to David, allows access to Alice and Marry
is left unlabeled. The initial matrix Y is as follows:


Deny Allow

David 1 0

Alice 0 1

Marry 0 0


A. Label Propagation

For the classification of the users’ permissions, we use a
semi-supervised propagation function in an iterative process.
In this process, we propagate the users’ permissions through-
out the similarity graph. At each step, the labeled data along
with their similarity to each user are used to propagate
the policy labels. The classification function is described as
F (t + 1) = αSF (t) + (1 − α)Y , where Y , S and F (t)
represent the initial labels matrix , similarity matrix, and
previous iterations matrix respectively. The iterative function
F (t) converges to F ∗, as proven in [9], described as follows:

lim
t→∞

F (t) =(1− α)(I− αS)−1Y.

The closed form noted F ∗ will result in a n × 2 matrix,
where the first column represent the Deny preference and
the second column represents the Allow preference. A per-
mission recommendation decision is made for each friend
by choosing the highest preference value. This iterative
propagation process depends on the initial labeling and the
accuracy can be improved by using the active learning
paradigm [14]. The propose active learning approach is
discussed in the following section.

B. Active Learning

Active learning [15], [16] aims at reducing the number
of training examples to be labeled by selectively picking a
subset of the unlabeled data. The selection of data points
to label is done by inspecting the unlabeled examples and
selecting the points with the maximum label ambiguity



(entropy), or least confidence. In other words, active learning
aims at selecting the examples which have the largest
improvement on performance and ultimately reducing the
amount of human labeling effort involved.

Let the set of instances X = Xl ∪ Xu, where Xl =
{x1, . . . , xl} is the set of labeled instances and Xu =
{xl+1, . . . , xn} is the set of unlabeled instances. Active
learning will sequentially select the most informative (un-
certain) friend instance uk from the unlabeled pool Xu to be
labeled and added to the labeled pool Xl. The newly labeled
user uk is the user with the least confidence Ck(i) among
the unlabeled friends in the previous iteration. The proposed
confidence vector C(i) for the unlabeled friends is computed
using using the previous iteration F ∗(i) as follows:

C(i) =
‖F ∗(i)[Allow]− F ∗(i)[Deny]‖
‖F ∗(i)[Allow] + F ∗(i)[Deny]‖

Where F ∗(i)[Allow] represents the allow preference col-
umn with the index one, and F ∗(i)[Deny] represents the
deny preference column with the index zero. Assume that
initial label assignment is represented by Yi. After selecting
the least confident instance k, the new label set is denoted
by Yi+1 such that Yi+1 = Yi + ∆i+1, where ∆i+1 ∈ Rn×2
represents the labeling of the newly labeled instance and is
zero else where. If the instance xk ∈ Xu is selected for
labeling, where the user is asked to label for his friend uk,
the value of Yi+1 is:

Yi+1 = Yi +

[
0 · · · y1,k 0 · · ·
0 · · · y2,k 0 · · ·

]T
Where y1,k, y2,k ∈ {0, 1} are the allow and deny choices
respectively for user’s friend uk. Given the new labeled
matrix Yi+1 the final labeling can be computed based on the
label propagation approach to compute F ∗(i + 1). In what
follows we show that the new value of F ∗(i+ 1) is related
to previous F ∗(i), which can be computed incrementally as:

F ∗(i+ 1) = (1− α)(I − αS)−1Yi+1

= F ∗(i) + (1− α)(I − αS)−1∆i+1

Note that the second term is simply the addition of [0, Ak]
or [Ak, 0], which is based on the value of y1,k and y2,k,
to the previous F ∗(i), where Ak is the kth column of the
matrix A = (1−α)(I−αS)−1. The added term summarizes
the propagation contribution of the newly added labeled
user uk. The matrix A is a constant matrix computed once
at the beginning of the process. Therefore, at each active
learning iteration the new labeling F ∗(i + 1) is simply the
sum of F ∗(i) and the propagation contribution, without the
overhead of matrix multiplication or inverse.

C. Object Collaborative Active Learning

To reduce users labeling effort, we propose an object
collaborative active learning (CAL) technique that lever-
ages object similarity in the active learning approach. The

proposed CAL approach starts by grouping similar objects
together, then it computes a global confidence vector Cg for
each group g. The global confidence vector Cg is used to
pick the least confident friend to be labeled for each object
in the group.

Algorithm 1: Object CAL
Input: Users X , Objects O

1 Get initial labelings Yo for each object o ∈ O.
2 Cluster objects based on similarity into groups (OG).
3 repeat
4 for g ∈ OG do
5 Compute F ∗

o (i) for each object in object group Og .
6 Compute confidence Cg(i) for each object group Og .
7 Based on the confidence Cg(i) select the unlabeled

user uk that has the least confidence.
8 Request the user to label the selected user uk.
9 Update the labeling set Yo for each object in the

object group Og to reflect the labeling of uk.
10 end
11 until User continues to provide privacy labels;

We group objects using the hierarchical structure of the
object network when possible, for instance photos in the
same album. In addition we group similar objects with
regards to objects’ initial policies using a simple similarity
clustering algorithm, such as k-means. We assume that sim-
ilar objects, with regards to users’ initial policy preferences
will have similar policies and thus can collectively guide
the active learning process to select the next user to label.
The SSL propagation technique will lead to similar policy
preference predictions for objects with similar initial per-
mission labels (policy vectors). This will result into similar
confidence values and similar friends to label in the CAL,
thus reducing the labeling effort.

Global confidence for each object group Og is computed
using the confidence vectors of each object in the group.
Recall that the unlabeled friends selected for labeling in
the active learning are the points with maximum preference
ambiguity or least confident for each object. Assume Co(i) is
the friends’ confidence vector computed using the propaga-
tion function F ∗o (i) for each object o, a combined confidence
vector Cg(i) can be computed for all objects o ∈ Og in each
CAL group, such that:

Cg(i) =
∑
o∈Og

δ Co(i).

Where δ ∈ (0, 1) is the object weight or object sensitivity
coefficient that is set by the user following the object
importance. Once Cg(i) is computed for a specific group,
we choose the friend with the least confidence among the
users of Cg(i), and ask the user to label this friend for each
object in the group. All objects of a specific group contribute
to picking a common friend to be labeled for each object of
the group, and thus reduce the effort required in comparison
to setting the privacy policy for each object separately.



IV. EXPERIMENTS AND EVALUATION

In this section we start by describing the prototype im-
plementation details, then we discuss the evaluation results
comparing our proposed approach with other approaches.

A. Prototype Details

To collect user policy preferences we created a user study
as a Facebook application for profile policy management.
The application provides users with an interface to specify
policies for their friends. The application user interface
was designed to be aesthetically similar to the current
Facebook profile screen. The profile was made to look as
real as possible by including the current participant’s profile
information however the provided friends’ permissions are
only for the purpose of the study. The application presents
the user with one of his friends and is asked to decide on
what profile attributes this friend should be allowed/denied
access to. The interface was built such that user is able to see
what his friend will be able to view, by clicking an attribute
the user is able to toggle the access granted to his friend over
this attribute. In addition the attribute alpha level is changed
to indicate if it is allowed (bold) or denied (grayed out).
Figure 3, shows a screen shot of the prototype, for example
the friend is allowed to access the user’s religious views,
and is denied access to the user’s email.

Figure 3. Policy Authoring Prototype.

The user study, which was approved IRB Protocol #11-
08-01 UNC Charlotte, was composed of two tasks. In the
first task the participants installed our Facebook application
which collects user profile information, friendship relation-
ships (social graph), friends’ profiles, and group informa-
tion. Then the users were presented with an online tutorial
highlighting how to application’s user interface to compose
profile policies. In the second task, the users were presented
with our interface and were asked to provide profile poli-
cies for their friends. We implemented our prototype using

Adobe Flex 4 for the client side and PHP for Facebook APIs
access. We collected users access permissions on email,
birthday, college, status, location, religion, photos, albums,
and more.

We recruited our user study participants from the student
population of the University of North Carolina at Charlotte
and from Amazon Mechanical Turk. Amazon Mechanical
Turk is a crowd sourcing marketplace that pairs Requesters
of work and Workers. Requesters formulate work into Hu-
man Intelligent Tasks (HIT) which are individual tasks
that workers complete. We set up our prototype Facebook
application as a HIT, which included the two tasks described.
To better control the quality of the recruited participants,
we mandated that each worker have at least a 95% HIT
approval rating. A HIT took approximately 10-15 minutes
to complete, for which each worker was paid a fee of $1.50.
A 222 users successfully completed the user study. We used
the total time spent to complete the study as a measure to
remove 5% of the outlying users who had an absolute Z-
Score value greater than three.

B. Experimental Results

The SSL based approach and the proposed active learning
were implemented using the statistical R language version
2.14.0. We also implemented the supervised learning ap-
proach described in [3], and the random walk approach
described in [14] to compare against our approach. The
supervised learning approach as the name implies uses a
supervised learning classifier (SVM) to classify and label
users. The random walk approach constructs an active
learning approach based on random walk on graphs and
models the transition probabilities proportional to the graph
edge weights. This approach uses the conditional expected
hitting times from unlabeled nodes to labeled nodes as
a classification rule. The experiments were conducted on
the collected privacy policy preferences. We used Facebook
APIs to extract users’ profile information, friends (social
graph), and objects information belonging to users. To
extract network metrics, we used the social graph topology
and we computed the betweenness, degree, and centrality.
In addition, we computed the friend’s spectral coordinates
from the adjacency matrix using the eigenvectors. We con-
ducted a number of experiments starting by testing the SSL
approach. We first tested the discriminative attributes against
the training effort and divided the attributes into three classes
(Profile, Network, and Spectral attributes). We noted that by
combining all the three classes into a single feature vector
consistently gave higher accuracy and precision values, thus
in all the following experiments we used all the three feature
classes.

Parameter Selection: the SSL approach uses a diffusion
coefficient α that guides the bias either towards the initial
training Y provided by the user or towards the similarity
propagation. We conducted an experiment to find the best
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Figure 4. Experimental results: parameter selection and classifier comparison

value of this parameter, Figure 4(a) shows that setting the
diffusion coefficient to 60% provides the best accuracy
result. In addition, we performed an experiment to find the
suitable bandwidth parameter σ used in the RBF kernel
similarity computation. Figure 4(b) shows that the bandwidth
parameter of 20% returns the best accuracy. In all the
following experiments we used 20% as bandwidth parameter
and 60% as diffusion coefficient. We also ran 10 folds cross-
validation for the training in each experiment.

Classifier Comparison: We conducted experiments to
evaluate our graph-based SSL approach against the training
effort of the users and to compare it to the existing Super-
vised and Random Walk approaches. Figures 4(c) and 4(d)
show that our approach performs at over 94% accuracy and
91% precision with only 5% training effort, and increases
monotonously with the user training effort. In addition, our
proposed SSL approach outperforms both the supervised
learning and random walk approaches by providing higher
accuracy and precision for the same effort levels. Note that
the random walk approach provided accuracy and precision
levels lower than both SSL and supervised learning (SVM).
The supervised learning approach failed to provide high pre-
cision which averaged around 60%, while on the other hand
our proposed approaches maintained a precision over 90%.
We also investigated the effect of our proposed graph based
SSL with active learning allowing users to label one node
at each active learning iteration, where we used 20% of the
training effort as initial training and 80% as active learning
training effort. Figure 4(c), shows that in comparison to the
SSL approach the SSL with Active Learning provides about
2% improvement to the accuracy and 3% improvement to
precision at the same training effort.

Collaborative Active Learning: To evaluate the CAL
approach, we select three objects and attempt to train them
simultaneously using the proposed approach. Even though
CAL uses the same friends to label as active training set for
all the three objects, thus reducing the user’s effort, there
is no reduction in the classification accuracy and precision

when compared to SSL Alone as shown in Figures 5(a)
and 5(b). The values reported for SSL Alone, represent the
average values computed for the three trained objects. In
addition CAL provides around 4% improvement in accuracy
and precision when compared to SSL Alone. This implies
that the CAL is able to simultaneously train multiple classi-
fiers while at the same time reduce the user effort. We also
used a clustering technique to cluster similar objects together
into groups and use each group in the CAL. We chose a
pool of 14 objects for this experiments, and the average
number of clusters was of 1.3 clusters with an average of
10.8 objects per cluster. Regardless of the number of objects
in each group, our experiments show that using similar
objects of a group in CAL improves the average accuracy
and precision in comparison with the SSL Alone and the
randomly selected three objects as shown in Figures 5(a)
and 5(b). Since we are using the user training effort (80% of
the training size) for all three objects, we can lower the user
effort by 66%. Given n objects used in the CAL with initial
active learning training effort e (number of friends to label),
the user effort is reduced to e

n . To investigate the effect of
varying the number of objects, we fixed the initial training
effort to 10% and varied the number of objects selected
randomly with multiple folds. Increasing the number of
objects in CAL decreases the user’s effort, while maintaining
the accuracy and precision values. Figures 5(c) and 5(d),
report the accuracy and precision of the CAL approach for
different number of objects.

Incremental Study: SNs are dynamic environments
where friends and objects are continuously being updated.
Users are always making new friendships, which translates
to adding new links to the social graph, in addition users
can also break their friendships with other users. Similarly,
users can add and delete objects such as photos and videos.
This incremental behavior leads to increase the number of
privacy policy settings, thus the number of users’ decisions.
We performed an incremental study on the user population
that we have collected by selecting a subset of the SN (social
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Figure 5. Collaborative Active Learning (CAL) Experimental Results.

subgraph) of each user and incrementally adding friends.
This approach consist of rebuilding the propagation function
with a new similarity matrix based on the new social graph
topology and clustering. Figures 6(a) and 6(b), show the
effect of adding new friends on the accuracy and precision
for both the SSL Alone and SSL with Active Learning
mechanisms. Note that the classifier is able to provide high
accuracy and precision even with adding new nodes (friends)
to the social graph.
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Figure 6. Incremental Study Results

V. RELATED WORK

Privacy settings in Social Networking sites is a big
concern for users; in addition, fine grained privacy set-
tings makes it harder for users to specify their privacy
preference. Access control in social networking sites is
an emerging problem that is attracting numerous access
control researchers providing assisted privacy setting tools,
privacy wizards, and recommendation tools. This paper
mainly focuses on privacy preference recommendation, and
builds upon our previous work in user centric policy man-
agement [4].

In our previous work [4], we proposed a supervised learn-
ing approach to build a classifier model based on interaction,
which evaluates trust between users. We also fused the
different community classifiers to improve the classification

results. Although the results were promising (83% accuracy,
78%precision with 20% training), this approach did not
address active learning and multiple object labeling. Another
related work is Fang et al., they proposed a privacy wizard
using supervised learning that uses community structure and
proved that the friendship based community features can
provide accurate classification results [3]. Fang et al. used
uncertainty sampling to identify the users most uncertain
friends to label. In this paper, we use a semi-supervised
learning approach that improves on the previously used
supervised learning approach using less labeled data. In
addition, we use a novel clustering approach to select the
most informative friends based on friends feature vectors,
adjacency matrix, and policy labels.

In this paper we use a semi-supervised learning tech-
nique for privacy preference recommendations. Numerous
work have been done to demonstrate the effectiveness and
efficiency of semi-supervised learning in comparison to
supervised learning. For instance, semi-supervised learning
was used to optimize feature selection in graph classification
in [17], where the authors extracted optimal subgraph fea-
tures using labeled and unlabeled graphs and proved that
their approach outperformed the supervised and unsuper-
vised approaches. One of the most important elements of
semi-supervised learning is the selection of the type and
algorithm to use following the domain of interest. There
is several semi-supervised learning techniques including:
Semi-supervised learning using Co-Training [18] where the
idea is to use less labeled data by dividing the classification
problem into two separate views and train two models
recursively using each other training data. Graph based semi-
supervised learning is another approach that models the
problem as a weighted graph problem, where the vertices
represent the labeled and unlabeled data and the weighted
edges represent a similarity between the nodes [19]. A
comparative study of semi-supervised learning techniques
can be found in [20].

More relevant to our work, semi-supervised learning was



used in social networks to infer users private informa-
tion from the public labeled and unlabeled data using co-
training and graph based semi-supervised learning [21].
Semi-supervised learning was also used in Hyper-spectral
Image Classification [9], where the authors used a graph
based semi-supervised learning by recursively improving
upon previous predictions. The authors also used a closed
form that was proven to converge in [22].

Random walk is another approach used in class prediction.
For instance, it was used in Active Learning via Random
Walk [14], where the authors used a relative distance based
on random walk probability to predict the most informative
instances to label. Interesting fact about this paper is that
the authors chose the closest points to both classes and still
used a relative distance to handle outliers.

Collaborative filtering is popular in recommender systems
and we adopted this principle in policy recommendations. It
was used in [23] to predict user preferences by implicitly
extracting users ratings and using user based and item
based collaborative filtering. Fouss et al. [24] proposed a
collaborative filtering model based on random walk on a
graph and extracted two quantity, average first passage time
and average commute time, then embed those quantities
in an Euclidian space to identify the recommendations. A
survey of collaborative techniques can be found in [25].
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VII. CONCLUSION

Policy settings in social networks is a challenging problem
for SN users, and at the same time automation approaches
create multiple issues. The paper presented a solution for
helping users to manage and set their privacy policies
through policy recommendations. We proposed a graph
based SSL for policy recommendation in SNs to reduce user
effort and improve the policy preference prediction accuracy.
Furthermore, we proposed an active learning and collab-
orative active learning approach to reduce the user effort
while providing high prediction accuracy and precision. We
implemented the proposed approaches in the context of a
real world social network (Facebook) as a social application.
The collected data was used to conduct experiments on the
proposed approaches. The experimental results highlight the
effectiveness of the proposed approaches in comparison to
supervised learning and random walk approaches. In addi-
tion, we showed the ability of the proposed SSL approach
to accommodate the dynamic behavior of SNs.
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